12 resultados para INNERVATION

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

GABAergic and glycinergic synaptic transmission is proposed to promote the maturation and refinement of the developing CNS. Here we provide morphological and functional evidence that glycinergic and GABAergic synapses control motoneuron development in a region-specific manner during programmed cell death. In gephyrin-deficient mice that lack all postsynaptic glycine receptor and some GABA(A) receptor clusters, there was increased spontaneous respiratory motor activity, reduced respiratory motoneuron survival, and decreased innervation of the diaphragm. In contrast, limb-innervating motoneurons showed decreased spontaneous activity, increased survival, and increased innervation of their target muscles. Both GABA and glycine increased limb-innervating motoneuron activity and decreased respiratory motoneuron activity in wild-type mice, but only glycine responses were abolished in gephyrin-deficient mice. Our results provide genetic evidence that the development of glycinergic and GABAergic synaptic inputs onto motoneurons plays an important role in the survival, axonal branching, and spontaneous activity of motoneurons in developing mammalian embryos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many marine reptiles and birds possess extrarenal salt glands that facilitate the excretion of excess sodium and chloride ions accumulated as a consequence of living in saline environments. Control of the secretory activity of avian salt glands is under neural control, but little information is available on the control of reptilian salt glands. Innervation of the lingual salt glands of the salt water crocodile, Crocodylus porosus, was examined in salt water-acclimated animals using histological methods. Extensive networks of both cholinergic and adrenergic nerve fibres were identified close to salt-secreting lobules and vasculature. The identification of both catecholamine-containing and cholinergic neurons in the salt gland epithelium and close to major blood vessels in the tissue suggests the action of the neurotransmitters on the salt-secreting epithelium itself and the rich vascular network of the lingual salt glands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prevalence of dementia is growing in developed countries where elderly patients are increasing in numbers. Neurotransmission modulation is one approach to the treatment of dementia. Cholinergic precursors, anticholinesterases, nicotine receptor agonists and muscarinic M-2 receptor antagonists are agents that enhance cholinergic neurotransmission and that depend on having some intact cholinergic innervation to be effective in the treatment of dementia. The cholinergic precursor choline alfoscerate may be emerging as a potential useful drug in the treatment of dementia, with few adverse effects. Of the anticholinesterases, donepezil, in addition to having a similar efficacy to tacrine in mild-to-moderate Alzheimer's disease (AD), appears to have major advantages; its use is associated with lower drop-out rates in clinical trials, a lower incidence of cholinergic-like side effects and no liver toxicity. Rivastigmine is efficacious in the treatment in dementia with Lewy bodies, a condition in which the other anticholinesterases have not been tested extensively to date. Galantamine is an anticholinesterase and also acts as an allosteric potentiating modulator at nicotinic receptors to increase the release of acetylcholine. Pooled data from clinical trials of patients with mild-to-moderate AD suggest that the benefits and safety profile of galantamine are similar to those of the anticholinesterases. Selective nicotine receptor agonists are being developed that enhance cognitive performance without influencing autonomic and skeletal muscle function, but these have not yet entered clinical trial for dementia. Unlike the cholinergic enhancers, the M, receptor agonists do not depend upon intact cholinergic nerves but on intact M, receptors for their action, which are mainly preserved in AD and dementia with Lewy bodies. The M, receptor-selective agonists developed to date have shown limited efficacy in clinical trials and have a high incidence of side effects. A major recent advancement in the treatment of dementia is memantine, a non-competitive antagonist at NMDA receptors. Memantine is beneficial in the treatment of severe and moderate to-severe AD and may also be of some benefit in the treatment of mild-to-moderate vascular dementia. Drugs that modulate 5-HT, somatostatin and noradrenergic neurotransmission are also being considered for the treatment of dementia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of a diabetic cardiomyopathy, independent of hypertension and coronary artery disease, is still controversial. This systematic review seeks to evaluate the evidence for the existence of this condition, to clarify the possible mechanisms responsible, and to consider possible therapeutic implications. The existence of a diabetic cardiomyopathy is supported by epidemiological findings showing the association of diabetes with heart failure; clinical studies confirming the association of diabetes with left ventricular dysfunction independent of hypertension, coronary artery disease, and other heart disease; and experimental evidence of myocardial structural and functional changes. The most important mechanisms of diabetic cardiomyopathy are metabolic disturbances (depletion of glucose transporter 4, increased free fatty acids, carnitine deficiency, changes in calcium homeostasis), myocardial fibrosis (association with increases in angiotensin II, IGF-I, and inflammatory cytokines), small vessel disease (microangiopathy, impaired coronary flow reserve, and endothelial dysfunction), cardiac autonomic neuropathy (denervation and alterations in myocardial catecholamine levels), and insulin resistance (hyperinsulinemia and reduced insulin sensitivity). This review presents evidence that diabetes is associated with a cardiomyopathy, independent of comorbid conditions, and that metabolic disturbances, myocardial fibrosis, small vessel disease, cardiac autonomic neuropathy, and insulin resistance may all contribute to the development of diabetic heart disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the nature of vasodilator mechanisms in the dorsal aorta of the giant shovelnose ray, Rhinobatus typus. Anatomical techniques found no evidence for an endothelial nitric oxide synthase, but neural nitric oxide synthase was found to be present in the perivascular nerve fibres of the dorsal aorta and other arteries and veins using both NADPH-diaphorase staining and immunohistochemistry with a specific neural NOS antibody. Arteries and veins both contained large nNOS-positive nerve trunks from which smaller nNOS-positive bundles branched and formed a plexus in the vessel wall. Single, varicose nNOS-positive nerve fibres were present in both arteries and veins. Within the large bundles of both arteries and veins, groups of nNOS-positive cell bodies forming microganglia were observed. Double-labelling immunohistochemistry using an antibody to tyrosine hydroxylase showed that nearly all the NOS nerves were not sympathetic. Acetylcholine always caused constriction of isolated rings of the dorsal aorta and the nitric oxide donor, sodium nitroprusside, did not mediate any dilation. Addition of nicotine (3 x 10(-4) M) to preconstricted rings caused a vasodilation that was not affected by the nitric oxide synthase inhibitor, L-NNA (10(-4) M), nor the soluble guanylyl cyclase inhibitor, ODQ (10(-5) M). This nicotine-mediated vasodilation was, therefore, not due to the synthesis and release of NO. Disruption of the endothelium significantly reduced or eliminated the nicotine-mediated vasodilation. In addition. indomethacin (10(-5) M), an inhibitor of cyclooxygenases, significantly increased the time period to maximal dilation and reduced, but did not completely inhibit the nicotine-mediated vasodilation. These data support the hypothesis that a prostaglandin is released from the vascular endothelium of a batoid ray, as has been described previously in other groups of fishes. The function of the nitrergic innervation of the blood vessels is not known because nitric oxide does not appear to regulate vascular tone. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of gamma-aminobutyric acid (GABA) on the electrophysiological properties of intracardiac neurones were investigated in the intracardiac ganglion plexus in situ and in dissociated neurones from neonatal, juvenile and adult rat hearts. Focal application of GABA evoked a depolarizing, excitatory response in both intact and dissociated intracardiac ganglion neurones. Under voltage clamp, both GABA and muscimol elicited inward currents at -60 mV in a concentration-dependent manner. The fast, desensitizing currents were mimicked by the GABA(A) receptor agonists muscimol and taurine, and inhibited by the GABA(A) receptor antagonists, bicuculline and picrotoxin. The GABA(A0) antagonist (1,2,5,6-tetrahydropyridin-4-yl)methyl phosphonic acid (TPMPA), had no effect on GABA-induced currents, suggesting that GABA(A) receptor-channels mediate the response. The GABA-evoked current amplitude recorded from dissociated neurones was age dependent whereby the peak current density measured at -100 mV was similar to 20 times higher for intracardiac neurones obtained from neonatal rats (P2-5) compared with adult rats (P45-49). The decrease in GABA sensitivity occurred during the first two postnatal weeks and coincides with maturation of the sympathetic innervation of the rat heart. Immunohistochemical staining using antibodies against GABA demonstrate the presence of GABA in the intracardiac ganglion plexus of the neonatal rat heart. Taken together, these results suggest that GABA and taurine may act as modulators of neurotransmission and cardiac function in the developing mammalian intrinsic cardiac nervous system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Serotonin (5-hydroxytryptamine, 5-HT) is an amine neurotransmitter derived from tryptophan and is important in brain systems regulating mood, emotional behavior, and sleep. Selective serotonin reuptake inhibitor (SSRI) drugs are used to treat disorders such as depression, stress, eating disorders, autism, and schizophrenia. It is thought that these drugs act to prolong the action of 5-HT by blocking reuptake. This may lead to decreased 5-HT content in the nerve fibers themselves; however, this has not previously been directly demonstrated. We have studied the effects of administration of two drugs, imipramine and citalopram, on levels of 5-HT in nerve fibers in the murine brain. Quantitative analysis of the areal density of 5-HT fibers throughout the brain was performed using ImageJ software. While a high density of fibers was observed in mid- and hind-brain regions and areas such as thalamus and hypothalamus, densities were far lower in areas such as cortex, where SSRIs might be thought to exert their actions. As anticipated, imipramine and citalopram produced a decline in 5-HT levels in nerve fibers, but the result was not uniform. Areas such as inferior colliculus showed significant reduction whereas little, if any, change was observed in the adjacent superior colliculus. The reason for, and significance of, this regionality is unclear. It has been proposed that serotonin effects in the brain might be linked to changes in glutamatergic transmission. Extracellular glutamate levels are regulated primarily by glial glutamate transporters. Qualitative evaluation of glutamate transporter immunolabeling in cortex of control and drug-treated mice revealed no discernable difference in intensity of glutamate transporter immunoreactivity. These data suggest that changes in intracellular and extracellular levels of serotonin do not cause concomitant changes in astroglial glutamate transporter expression, and thus cannot represent a mechanism for the delayed efficacy of antidepressants when administered clinically. © 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sartorius muscle is the longest muscle in the human body. It is strap-like, up to 600 mm in length, and contains five to seven neurovascular compartments, each with a neuromuscular endplate zone. Some of its fibers terminate intrafascicularly, whereas others may run the full length of the muscle. To assess the location and timing of activation within motor units of this long muscle, we recorded electromyographic potentials from multiple intramuscular electrodes along sartorius muscle during steady voluntary contraction and analyzed their activity with spike-triggered averaging from a needle electrode inserted near the proximal end of the muscle. Approximately 30% of sartorius motor units included muscle fibers that ran the full length of the muscle, conducting action potentials at 3.9 +/- 0.1 m/s. Most motor units were innervated within a single muscle endplate zone that was not necessarily near the midpoint of the fiber. As a consequence, action potentials reached the distal end of a unit as late as 100 ms after initiation at an endplate zone. Thus, contractile activity is not synchronized along the length of single sartorius fibers. We postulate that lateral transmission of force from fiber to endomysium and a wide distribution of motor unit endplates along the muscle are critical for the efficient transmission of force from sarcomere to tendon and for the prevention of muscle injury caused by overextension of inactive regions of muscle fibers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DCC (deleted in colorectal cancer)-the receptor of the netrin-1 neuronal guidance factor-is expressed and is active in the central nervous system (CNS) during development, but is down-regulated during maturation. The substantia nigra contains the highest level of netrin-1 mRNA in the adult rodent brain, and corresponding mRNA for DCC has also been detected in this region but has not been localized to any particular neuron type. In this study, an antibody raised against DCC was used to determine if the protein was expressed by adult dopamine neurons, and identify their distribution and projections. Significant DCC-immunoreactivity was detected in midbrain, where it was localized to ventrally displaced A9 dopamine neurons in the substantia nigra, and ventromedial A10 dopamine neurons predominantly situated in and around the interfascicular nucleus. Strong immunoreactivity was not detected in dopamine neurons found elsewhere, or in non-dopamine-containing neurons in the midbrain. Terminal fields selectively labeled with DCC antibody corresponded to known nigrostriatal projections to the dorsolateral striatal patches and dorsomedial shell of the accumbens, and were also detected in prefrontal cortex, septum, lateral habenular and ventral pallidum. The unique distribution of DCC-immunoreactivity in adult ventral midbrain dopamine neurons suggests that netrin-1/DCC signaling could function in plasticity and remodeling previously identified in dopamine projection pathways. In particular, a recent report that DCC is regulated through the ubiquitin-proteosome system via Siah/Sina proteins, is consistent with a potential involvement in genetic and sporadic forms of Parkinson's disease. (c) 2005 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of substance P (SP) on nicotinic acetylcholine (ACh)-evoked currents were investigated in parasympathetic neurons dissociated from neonatal rat intracardiac ganglia using standard whole cell, perforated patch, and outside-out recording configurations of the patch-clamp technique. Focal application of SP onto the soma reversibly decreased the peak amplitude of the ACh-evoked current with half-maximal inhibition occurring at 45 mu M and complete block at 300 mu M SP. Whole cell current-voltage (I-V) relationships obtained in the absence and presence of SP indicate that the block of ACh-evoked currents by SP is voltage independent. The rate of decay of ACh-evoked currents was increased sixfold in the presence of SP (100 mu M), suggesting that SP may increase the rate of receptor desensitization. SP-induced inhibition of ACh-evoked currents was observed following cell dialysis and in the presence of either 1 mM 8-Br-cAMP, a membrane-permeant cAMP analogue, 5 mu M H-7, a protein kinase C inhibitor, or 2 mM intracellular AMP-PNP, a nonhydrolyzable ATP analogue. These data suggest that a diffusible cytosolic second messenger is unlikely to mediate SP inhibition of neuronal nicotinic ACh receptor (nAChR) channels. Activation of nAChR channels in outside-out membrane patches by either ACh (3 mu M) or cytisine (3 mu M) indicates the presence of at least three distinct conductances (20, 35, and 47 pS) in rat intracardiac neurons. In the presence of 3 mu M SP, the large conductance nAChR channels are preferentially inhibited. The open probabilities of the large conductance classes activated by either ACh or cytisine were reversibly decreased by 10- to 30-fold in the presence of SP. The single-channel conductances were unchanged, and mean apparent channel open times for the large conductance nAChR channels only were slightly decreased by SP. Given that individual parasympathetic neurons of rat intracardiac ganglia express a heterogeneous population of nAChR subunits represented by the different conductance levels, SP appears to preferentially inhibit those combinations of nAChR subunits that form the large conductance nAChR channels. Since ACh is the principal neurotransmitter of extrinsic (vagal) innervation of the mammalian heart, SP may play an important role in modulating autonomic control of the heart.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agrin is a proteoglycan secreted by motor neurite terminals that functions to initiate and maintain AChR clusters at the nerve terminal. This led to the theory that neurite terminals decide where neuromuscular synapses form by secreting agrin. However, initiation of AChR clustering occurs in the absence of the innervating motoneuron and in the absence of agrin. In this instance, the muscle, not the nerve, is deciding the location of neuromuscular synapses by drawing neurite terminals towards pre-existing AChR clusters. If this were true, one would expect the initial innervation patterns to be the same in agrin-deficient mice and wild-type mice. To test this we quantified the intramuscular axonal branching and synapse formation in the diaphragm at E14.5 in agrin-deficient mice and wild-type mice. Heterozygote mothers were anaesthetised with Nembutal (30 mg) and killed via cervical dislocation. In the diaphragm, the nerve trunk runs down the centre of the muscle and extends branches primarily toward the lateral side. In agrin-deficient mice however, we found significantly more branches exited the phrenic nerve trunk, branched in the periphery and extended further on the medial side. Moreover, we found that the percentage α-bungarotoxin/synaptophysin colocalisations, markers of pre- and postsynaptic differentiation, respectively, was the same in agrin-deficient mice and wild-type mice. These results show that initial innervation patterns are not the same in agrin-deficient mice and wild-type mice indicating neurite terminals, not muscle, decide the placement of neuromuscular synapses in the absence of agrin.