2 resultados para INFANTILE HYPOPHOSPHATASIA

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: To report the long-term outcome of a series of 49 patients who underwent three horizontal muscle squint surgery for large angle infantile esotropia. Methods: The patient records were retrospectively reviewed of 49 (24 girls [49%], 25 boys) consecutive patients with infantile esotropia of angle greater than or equal to60 Delta, who had undergone three horizontal muscle surgery performed by one surgeon (author GG). Surgery consisted of bilateral medial rectus recession combined with graded unilateral lateral rectus resection. Surgeries were carried out over a 6-year period with a mean follow-up period of 32.9 months (3.7-71.8 months). Results: Using Kaplan-Meier life-table analysis, cumulative surgical success (orthotropia +/-10 Delta) was 93.9% at 1 week, 91.8% at 2 and 6 months, 87.7% at 12 and 18 months, 79.9% at 2 years, 77.1% at 3, 4 and 5 years, and 70.6% at 6 years. The mean preoperative deviation was 68.7 Delta. The mean age at surgery was 12.9 months. The failure rate was independent of preoperative deviation. Prevalence of residual esotropia (>10 Delta) varied from 2.0% at 1 week to 17.0% at 6 years. Similarly the prevalence of consecutive exotropia (>10 Delta) varied from 4.0% at 1 week to 12.4% at 6 years. Conclusion: Operating in a graded fashion on three horizontal muscles in children with large angle infantile esotropia has a high success rate, even over long-term follow up. Based on the study's results, amounts of surgery for a given angle of strabismus are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Canine copper toxicosis is an important inherited disease in Bedlington terriers, because of its high prevalence rate and similarity to human copper storage disease. It can lead to chronic liver disease and occasional haemolytic anaemia due to impaired copper excretion. The responsible gene for copper toxicosis in Bedlington terriers has been recently identified and was found not to be related to human Wilson's disease gene ATP7B. Although our understanding of copper metabolism in mammals has improved through genetic molecular technology, the diversity of gene mutation related to copper metabolism in animals will help identify the responsible genes for non-Wilsonian copper toxicoses in human. This review paper discusses our knowledge of normal copper metabolism and the pathogenesis, molecular genetics and current research into copper toxicosis in Bedlington terriers, other animals and humans. (C) 2004 Elsevier GmbH. All rights reserved.