91 resultados para INDEPENDENT MECHANISMS
em University of Queensland eSpace - Australia
Resumo:
Approximately half of the motoneurons generated during normal embryonic development undergo programmed cell death. Most of this death occurs during the time when synaptic connections are being formed between motoneurons and their target, skeletal muscle. Subsequent muscle activity stemming from this connection helps determine the final number of surviving motoneurons. These observations have given rise to the idea that motoneuron survival is dependent upon access to muscle derived trophic factors, presumably through intact neuromuscular synapses. However, it is not yet understood how the muscle regulates the supply of such trophic factors, or if there are additional mechanisms operating to control the fate of the innervating motoneuron. Recent observations have highlighted target independent mechanisms that also operate to support the survival of motoneurons, such as early trophic-independent periods of motoneuron death, trophic factors derived from Schwann cells and selection of motoneurons during pathfinding. Here we review recent investigations into motoneuron cell death when the molecular signalling between motoneurons and muscle has been genetically disrupted. From these studies, we suggest that in addition to trophic factors from muscle and/or Schwann cells, specific adhesive interactions between motoneurons and muscle are needed to regulate motoneuron survival. Such interactions, along with intact synaptic basal lamina, may help to regulate the supply and presentation of trophic factors to motoneurons.
Resumo:
Infection of humans with the West Nile flavivirus principally occurs via tick and mosquito bites. Here, we document the expression of antigen processing and presentation molecules in West Nile virus (WNV)-infected human skin fibroblast (HFF) cells. Using a new Flavivirus-specific antibody, 4G4, we have analyzed cell surface human leukocyte antigen (HLA) expression on virus-infected cells at a single cell level. Using this approach, we show that West Nile Virus infection alters surface HLA expression on both infected HFF and neighboring uninfected HFF cells. Interestingly, increased surface HLA evident on infected HFF cultures is almost entirely due to virus-induced interferon (IFN)alpha/beta because IFNalpha/beta-neutralizing antibodies completely prevent increased surface HLA expression. In contrast, RT-PCR analysis indicates that WNV infection results in increased mRNAs for HLA-A, -B, and -C genes, and HLA-associated molecules low molecular weight polypeptide-2 (LMP-2) and transporter associated with antigen presentation-1 (TAP-1), but induction of these mRNAs is not diminished in HFF cells cultured with IFNalpha/beta-neutralizing antibodies. Taken together, these data support the idea that that both cytokine-dependent and cytokine-independent mechanisms account for WNV-induced HLA expression in human skin fibroblasts. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
On release from cardiac mast cells, alpha-chymase converts angiotensin I (Ang I) to Ang II. In addition to Ang II formation, alpha-chymase is capable of activating TGF-beta 1 and IL-1 beta, forming endothelins consisting of 31 amino acids, degrading endothelin-1, altering lipid metabolism, and degrading the extracellular matrix. Under physiological conditions the role of chymase in the mast cells of the heart is uncertain. In pathological situations, chymase may be secreted and have important effects on the heart. Thus, in animal models of cardiomyopathy, pressure overload, and myocardial infarction, there are increases in both chymase mRNA levels and chymase activity in the heart. In human diseased heart homogenates, alterations in chymase activity have also been reported. These findings have raised the possibility that inhibition of chymase may have a role in the therapy of cardiac disease. The selective chymase inhibitors developed to date include TY-51076, SUN-C8257, BCEAB, NK320, and TEI-E548. These have yet to be tested in humans, but promising results have been obtained in animal models of myocardial infarction, cardiomyopathy, and tachycardia-induced heart failure. It seems likely that orally active inhibitors of chymase could have a place in the treatment of cardiac diseases where injury-induced mast cell degranulation contributes to the pathology.
Resumo:
In this review we provide a brief background on the cell cycle and then focus on two novel and emerging areas of cell cycle research that may prove to have significant relevance to the development of novel anticancer agents. In particular, we review the emerging evidence to suggest that histone deacetylase inhibitors may possess cancer cell-specific cytotoxicity due to their ability to target a novel G2/M checkpoint. We also review the recent literature supporting the proposition that inhibition of E2F activity in epithelial cancer cells may prove to be a useful differentiation therapy that operates via cell cycle-dependent and cell cycle-independent mechanisms.
Resumo:
Myb-binding protein 1a (Mybbp1a) is a novel nuclear protein localized predominantly, but not exclusively, in nucleoli. Although initially isolated as a c-Myb interacting protein, Mybbp1a is expressed ubiquitously, associates with a number of different transcription factors, and may play a role in both RNA polymerase I- and II-mediated transcriptional regulation. However, its precise function remains unclear. In this study we show that Mybbp1a is a nucleocytoplasmic shuttling protein and investigate the mechanisms responsible for both nuclear import and export. The carboxyl terminus of Mybbp1a, which contains seven short basic amino acid repeat sequences, is responsible for both nuclear and nucleolar localization, and this activity can be transferred to a heterologous protein. Deletion mapping demonstrated that these repeat sequences appear to act incrementally, with successive deletions resulting in a corresponding increase in the proportion of protein localized in the cytoplasm. Glutathione S-transferase pulldown experiments showed that the nuclear receptor importin-alpha/beta mediates Mybbp1a nuclear import. Interspecies heterokaryons were used to demonstrate that Mybbp1a was capable of shuttling between the nucleus and the cytoplasm. Deletion analysis and in vivo export studies using a heterologous assay system identified several nuclear export sequences which facilitate Mybbp1a nuclear export of Mybbp1a by CRM1-dependent and -independent pathways. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
To date, several activating mutations have been discovered in the common signal-transducing subunit (h beta c) of the receptors for human granulocyte-macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Two of these, Fl Delta and 1374N, result in a 37 amino acid duplication and a single amino acid substitution in the extracellular domain of h beta c, respectively. A third, V449E, results in a single amino acid substitution in the transmembrane domain, Previous studies comparing the activity of these mutants in different hematopoietic cell lines imply that the transmembrane and extracellular mutations act by different mechanisms and suggest the requirement for cell type-specific molecules in signalling. To characterize the ability of these mutant hpc subunits to mediate growth and differentiation of primary cells and hence investigate their oncogenic potential, we have expressed all three mutants in primary murine hematopoietic cells using retroviral transduction. It is shown that, whereas expression of either extracellular hpc mutant confers factor-independent proliferation and differentiation on cells of the neutrophil and monocyte lineages only, expression of the transmembrane mutant does so on these lineages as well as the eosinophil, basophil, megakaryocyte, and erythroid lineages, Factor-independent myeloid precursors expressing the transmembrane mutant display extended proliferation in liquid culture and in some cases yielded immortalized cell lines. (C) 1997 by The American Society of Hematology.
Resumo:
The marine toxin bistratene A (BisA) potently induces cytostasis and differentiation in a variety of systems. Evidence that BisA is a selective activator of protein kinase C (PKC) delta implicates PKC delta signaling in the negative growth-regulatory effects of this agent. The current study further investigates the signaling pathways activated by BisA by comparing its effects with those of the PKC agonist phorbol 12-myristate 13-acetate (PMA) in the IEC-18 intestinal crypt cell line. Both BisA and PMA induced cell cycle arrest in these cells, albeit with different kinetics. While BisA produced sustained cell cycle arrest in G(o)/G(1) and G(2)/M, the effects of PMA were transient and involved mainly a G(o)/G(1), blockade. BisA also produced apoptosis in a proportion of the population, an effect not seen with PMA. Both agents induced membrane translocation/activation of PKC, with BisA translocating only PKC delta and PMA translocating PKC alpha, delta, and epsilon in these cells. Notably, while depletion of PKC alpha, delta, and epsilon abrogated the cell cycle-specific effects of PMA in IEC-18 cells, the absence of these PKC isozymes failed to inhibit BisA-induced G(o)/G(1), and G(2)/M arrest or apoptosis. The cell cycle inhibitory and apoptotic effects of BisA, therefore, appear to be PKC-independent in IEG-18 cells. On the other hand, BisA and PMA both promoted PKC-dependent activation of Erk 1 and 2 in this system. Thus, intestinal epithelial cells respond to BisA through activation of at least two signaling pathways: a PKC delta -dependent pathway, which leads to activation of mitogen-activated protein kinase and possibly cytostasis in the appropriate context, and a PKC-independent pathway, which induces both cell cycle arrest in G(o)/G(1) and G(2)/M and apoptosis through as yet unknown mechanisms. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
Purinergic stimulation of airway epithelial cells induces Cl- secretion and modulates Na+ absorption by an unknown mechanism. To gain insight into this mechanism, we used a perfused micro-Ussing chamber to assess transepithelial voltage (V-te) and amiloride-sensitive short-circuit current (Isc-Amil) in mouse trachea. Exposure to apical ATP or UTP (each 100 mumol/l) caused a large initial increase in lumen negative V-te and I-sc corresponding to a transient Cl- secretion, while basolateral application of ATP/UTP induced only a small secretory response. Luminal, but not basolateral, application of nucleotides was followed by a sustained and reversible inhibition of Isc-Amil that was independent of extracellular Ca2+ or activation of protein kinase C and was not induced by carbachol (100 mumol/l) or the Ca2+ ionophore ionomycin (1 mumol/l). Removal of extracellular Cl- or exposure to 200 muM DIDS reduced UTP-mediated inhibition of Isc-Amil Substantially. The phospholipase inhibitor U73122 (10 mumol/l) and pertussis toxin (PTX 200 ng/ml) both attenuated UTP-induced Cl- secretion and inhibition of Isc-Amil. Taken together, these data imply a contribution of Cl- conductance and PTX-sensitive G proteins to nucleotide-dependent inhibition of the amiloride-sensitive Na+ current in the mouse trachea.
Resumo:
Clathrin-coated pits and caveolae are two of the most recognizable features of the plasma membrane of mammalian cells. While our understanding of the machinery regulating and driving clathrin-coated pit-mediated endocytosis has progressed dramatically, including the elucidation of the structure of individual components and partial in vitro reconstitution, the role of caveolae as alternative endocytic carriers still remains elusive 50 years after their discovery. However, recent work has started to provide new insights into endocytosis by caveolae and into apparently related pathways involving lipid raft domains. These pathways, distinguished by their exquisite sensitivity to cholesterol-sequestering agents, can involve caveolae but also exist in cells devoid of caveolins and caveolae. This review examines the current evidence for the involvement of rafts and caveolae in endocytosis and the molecular players involved in their regulation.
Resumo:
Rock bolts have failed by Stress Corrosion Cracking (SCC). This paper presents a detailed examination of the fracture surfaces in an attempt to understand the SCC fracture mechanism. The SCC fracture surfaces, studied using Scanning Electron Microscopy (SEM), contained the following different surfaces: Tearing Topography Surface (TTS), Corrugated Irregular Surface (CIS) and Micro Void Coalescence (MVC). TTS was characterised by a ridge pattern independent of the pearlite microstructure, but having a spacing only slightly coarser than the pearlite spacing. CIS was characterised as porous irregular corrugated surfaces joined by rough slopes. MVC found in the studied rock bolts was different to that in samples failed in a pure ductile manner. The MVC observed in rock bolts was more flat and regular than the pure MVC, being attributed to hydrogen embrittling the ductile material near the crack tip. The interface between the different fracture surfaces revealed no evidence of a third mechanism involved in the transition between fracture mechanisms. The microstructure had no effect on the diffusion of hydrogen nor on the fracture mechanisms. The following SCC mechanism is consistent with the fracture surfaces. Hydrogen diffused into the material, reaching a critical concentration level. The thus embrittled material allowed a crack to propagate through the brittle region. The crack was arrested once it propagated outside the brittle region. Once the new crack was formed, corrosion reactions started producing hydrogen that diffused into the material once again. (C) 2003 Kluwer Academic Publishers.
Resumo:
The presence of a diabetic cardiomyopathy, independent of hypertension and coronary artery disease, is still controversial. This systematic review seeks to evaluate the evidence for the existence of this condition, to clarify the possible mechanisms responsible, and to consider possible therapeutic implications. The existence of a diabetic cardiomyopathy is supported by epidemiological findings showing the association of diabetes with heart failure; clinical studies confirming the association of diabetes with left ventricular dysfunction independent of hypertension, coronary artery disease, and other heart disease; and experimental evidence of myocardial structural and functional changes. The most important mechanisms of diabetic cardiomyopathy are metabolic disturbances (depletion of glucose transporter 4, increased free fatty acids, carnitine deficiency, changes in calcium homeostasis), myocardial fibrosis (association with increases in angiotensin II, IGF-I, and inflammatory cytokines), small vessel disease (microangiopathy, impaired coronary flow reserve, and endothelial dysfunction), cardiac autonomic neuropathy (denervation and alterations in myocardial catecholamine levels), and insulin resistance (hyperinsulinemia and reduced insulin sensitivity). This review presents evidence that diabetes is associated with a cardiomyopathy, independent of comorbid conditions, and that metabolic disturbances, myocardial fibrosis, small vessel disease, cardiac autonomic neuropathy, and insulin resistance may all contribute to the development of diabetic heart disease.
Resumo:
Migraine is a painful and debilitating disorder with a significant genetic component. Steroid hormones, in particular estrogen, have long been considered to play a role in migraine, as variations in hormone levels are associated with migraine onset in many sufferers of the disorder. Steroid hormones mediate their activity via hormone receptors, which have a wide tissue distribution. Estrogen receptors have been localized to the brain in regions considered to be involved in migraine pathogenesis. Hence it is possible that genetic variation in the estrogen receptor gene may play a role in migraine susceptibility. This study thus examined the estrogen receptor 1 (ESRalpha) gene for a potential role in migraine pathogenesis and susceptibility. A population-based cohort of 224 migraine sufferers and 224 matched controls were genotyped for the G594A polymorphism located in exon 8 of the ESR1 gene. Statistical analysis indicated a significant difference between migraineurs and non-migraineurs in both the allele frequencies (P=0.003) and genotype distributions (P=0.008) in this sample. An independent follow-up study was then undertaken using this marker in an additional population-based cohort of 260 migraine sufferers and 260 matched controls. This resulted in a significant association between the two groups with regard to allele frequencies (P=8x10(-6)) and genotype distributions (P=4x10(-5)). Our findings support the hypothesis that genetic variation in hormone receptors, in particular the ESR1 gene, may play a role in migraine.
Resumo:
A number of recent studies have provided new insights into the complexity of the endocytic pathways originating at the plasma membrane of mammalian cells. Many of the molecules involved in clathrin coated pit internalization are now well understood but other pathways are less well defined. Caveolae appear to represent a low capacity but highly regulated pathway in a restricted set of tissues in vivo. A third pathway, which is both clathrin- and caveolae-independent, may constitute a specialized high capacity endocytic pathway for lipids and fluid. The relationship of this pathway, if any, to macropinocytosis or to the endocytic pathways of lower eukaryotes remains an interesting open question. Our understanding of the regulatory mechanisms and molecular components involved in this pathway are at a relatively primitive stage. In this review, we will consider some of the characteristics of different endocytic pathways in high and lower eukaryotes and consider some of the common themes in endocytosis. One theme which becomes apparent from comparison of these pathways is that apparently different pathways can share common molecular machinery and that pathways considered to be distinct actually represent similar basic pathways to which additional levels of regulatory complexity have been added. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
There is now considerable evidence to suggest that non-demented people with Parkinson's disease (PD) experience difficulties using the morphosyntactic aspects of language. It remains unclear, however, at precisely which point in the processing of morphosyntax, these difficulties emerge. The major objective of the present study was to examine the impact of PD on the processes involved in accessing morphosyntactic information in the lexicon. Nineteen people with PD and 19 matched control subjects participated in the study which employed on-line word recognition tasks to examine morphosyntactic priming for local grammatical dependencies that occur both within (e.g. is going) and across (e.g. she gives) phrasal boundaries (Experiments 1 and 2, respectively). The control group evidenced robust morphosyntactic priming effects that were consistent with the involvement of both pre- (Experiment 1) and post-lexical (Experiment 2) processing routines. Whilst the participants with PD also recorded priming for dependencies within phrasal boundaries (Experiment 1), priming effects were observed over an abnormally brief time course. Further, in contrast to the controls, the PD group failed to record morphosyntactic priming for constructions that crossed phrasal boundaries (Experiment 2). The results demonstrate that attentionally mediated mechanisms operating at both the pre- and post-lexical stages of processing are able to contribute to morphosyntactic priming effects. In addition, the findings support the notion that, whilst people with PD are able to access morphosyntactic information in a normal manner, the time frame in which this information remains available for processing is altered. Deficits may also be experienced at the post-lexical integrational stage of processing.