44 resultados para ICC standard agreement
em University of Queensland eSpace - Australia
Resumo:
Objective: To determine item, subscale and total score agreement on the Frenchay Activities Index (FAI) between stroke patients and proxies six months after discharge from rehabilitation. Design: Prospective study design. Setting/subjects: Fifty patient-proxy pairs, interviewed separately, in the patient's residence. Main outcome measures: Modified FAI using 13 items. Individual FAI items, subscales and total score agreement as measured by weighted kappa and intraclass correlation coefficients (ICC). Results: Excellent agreement was found for the total FAI (ICC 0.87, 95% confidence interval (CI) 0.78-0.93), and domestic (ICC 0.85, 95% CI 0.73-0.91) and outdoor (ICC 0.87, 95% CI 0.78-0.95) subscales, with moderate agreement found for the work/leisure subscale (ICC 0.63, 95% CI 0.34-0.78). For the individual FAI items, good, moderate, fair and poor agreement was found for five, three, four and one item, respectively. The best agreement was for objective items of preparing meals, washing-up, washing clothes, shopping and driving. The poorest agreement was for participation in hobbies, social outings and heavy housework. Scoring biases associated with patient or proxy demographic characteristics were found. Female proxies, and those who were spouses, scored patients lower on domestic activities; male patients, and those who were younger, scored themselves higher on outdoor activities and higher patient FIM scores were positively correlated with higher FAI scores. Conclusions: While total and subscale agreement on the FAI was high, individual item agreement varied. Proxy scores should be used with caution due to bias.
Resumo:
Absolute calibration relates the measured (arbitrary) intensity to the differential scattering cross section of the sample, which contains all of the quantitative information specific to the material. The importance of absolute calibration in small-angle scattering experiments has long been recognized. This work details the absolute calibration procedure of a small-angle X-ray scattering instrument from Bruker AXS. The absolute calibration presented here was achieved by using a number of different types of primary and secondary standards. The samples were: a glassy carbon specimen, which had been independently calibrated from neutron radiation; a range of pure liquids, which can be used as primary standards as their differential scattering cross section is directly related to their isothermal compressibility; and a suspension of monodisperse silica particles for which the differential scattering cross section is obtained from Porod's law. Good agreement was obtained between the different standard samples, provided that care was taken to obtain significant signal averaging and all sources of background scattering were accounted for. The specimen best suited for routine calibration was the glassy carbon sample, due to its relatively intense scattering and stability over time; however, initial calibration from a primary source is necessary. Pure liquids can be used as primary calibration standards, but the measurements take significantly longer and are, therefore, less suited for frequent use.
Resumo:
As seen from street.
Resumo:
Hand-drawn plan and elevation.
Resumo:
The Direct Simulation Monte Carlo (DSMC) method is used to simulate the flow of rarefied gases. In the Macroscopic Chemistry Method (MCM) for DSMC, chemical reaction rates calculated from local macroscopic flow properties are enforced in each cell. Unlike the standard total collision energy (TCE) chemistry model for DSMC, the new method is not restricted to an Arrhenius form of the reaction rate coefficient, nor is it restricted to a collision cross-section which yields a simple power-law viscosity. For reaction rates of interest in aerospace applications, chemically reacting collisions are generally infrequent events and, as such, local equilibrium conditions are established before a significant number of chemical reactions occur. Hence, the reaction rates which have been used in MCM have been calculated from the reaction rate data which are expected to be correct only for conditions of thermal equilibrium. Here we consider artificially high reaction rates so that the fraction of reacting collisions is not small and propose a simple method of estimating the rates of chemical reactions which can be used in the Macroscopic Chemistry Method in both equilibrium and non-equilibrium conditions. Two tests are presented: (1) The dissociation rates under conditions of thermal non-equilibrium are determined from a zero-dimensional Monte-Carlo sampling procedure which simulates ‘intra-modal’ non-equilibrium; that is, equilibrium distributions in each of the translational, rotational and vibrational modes but with different temperatures for each mode; (2) The 2-D hypersonic flow of molecular oxygen over a vertical plate at Mach 30 is calculated. In both cases the new method produces results in close agreement with those given by the standard TCE model in the same highly nonequilibrium conditions. We conclude that the general method of estimating the non-equilibrium reaction rate is a simple means by which information contained within non-equilibrium distribution functions predicted by the DSMC method can be included in the Macroscopic Chemistry Method.
Resumo:
Bioelectrical impedance analysis (BIA) was used to assess body composition in rats fed on either standard laboratory diet or on a high-fat diet designed to induce obesity. Bioelectrical impedance analysis predictions of total body water and thus fat-free mass (FFM) for the group mean values were generally within 5% of the measured values by tritiated water ((H2O)-H-3) dilution. The limits of agreement for the procedure were, however, large, approximately +/-25%, limiting the applicability of the technique for measurement of body composition in individual animals.
Resumo:
Hydromorphone-3-glucuronide (H3G) was synthesized biochemically using rat liver microsomes, uridine-5'-diphosphoglucuronic acid (UDPGA) and the substrate, hydromorphone. Initially, the crude putative H3G product was purified by ethyl acetate precipitation and washing with acetonitrile, Final purification was achieved using semi-preparative high-performance-liquid-chromatography (HPLC) with ultraviolet (UV) detection. The purity of the final H3G product was shown by HPLC with electrochemical and ultraviolet detection to be > 99.9% and it was produced in a yield of approximate to 60% (on a molar basis). The chemical structure of the putative H3G was confirmed by enzymatic hydrolysis of the glucuronide moiety using P-glucuronidase, producing a hydrolysis product with the same HPLC retention time as the hydromorphone reference standard. Using HPLC with tandem mass spectrometry (HPLC-MS-MS) in the positive ionization mode, the molecular mass (M+1) was found to be 462 g/mol, in agreement with H3G's expected molecular weight of 461 g/mol. Importantly, proton-NMR indicated that the glucuronide moiety was attached at the 3-phenolic position of hydromorphone. A preliminary evaluation of H3G's intrinsic pharmacological effects revealed that following icy administration to adult male Sprague-Dawley rats in a dose of 5 mu g, H3G evoked a range of excitatory behavioural effects.including chewing, rearing, myoclonus, ataxia and tonic-clonic convulsions, in a manner similar to that reported previously for the glucuronide metabolites of morphine, morphine-3-glucuronide and normorphine-3-glucuronide.
Resumo:
Objective: To determine the effect of an early intervention program in an acute care setting on the length of stay in hospital of elderly patients with proximal femoral fractures. Setting: Acute orthopaedic ward of a large teaching hospital. Design and Participants: A randomised controlled trial comparing 38 intervention patients with 33 Standard Care patients. Intervention: Early surgery, minimal narcotic analgesia, intense daily therapy and close monitoring of patient needs via a multidisciplinary approach versus routine hospital management. Main outcome measures: Length of stay (LOS); deaths; level of independent functioning. Results: Mean LOS was shorter in the Intervention group than in the Standard Care group (21 days v. 32.5 days; P<0.01). After adjusting for other factors that could affect LOS (e.g. age, sex, pre-trauma functional levels, pre-trauma comorbidity and postsurgical complications), the Intervention program was significantly predictive of shorter LOS (P=0.01). The Intervention group did not experience greater numbers of deaths, deterioration in function or need for social support than the Standard Care group. Conclusion: This early intervention program in an acute care setting results in significantly shorter length of hospital stay for elderly patients with femoral fractures.
Resumo:
It is possible to remedy certain difficulties with the description of short wave length phenomena and interfacial slip in standard models of a laminated material by considering the bending stiffness of the layers. If the couple or moment stresses are assumed to be proportional to the relative deformation gradient, then the bending effect disappears for vanishing interface slip, and the model correctly reduces to an isotropic standard continuum. In earlier Cosserat-type models this was not the case. Laminated materials of the kind considered here occur naturally as layered rock, or at a different scale, in synthetic layered materials and composites. Similarities to the situation in regular dislocation structures with couple stresses, also make these ideas relevant to single slip in crystalline materials. Application of the theory to a one-dimensional model for layered beams demonstrates agreement with exact results at the extremes of zero and infinite interface stiffness. Moreover, comparison with finite element calculations confirm the accuracy of the prediction for intermediate interfacial stiffness.
Resumo:
Background: Concerns exist regarding the effect of radiation dose from paediatric pelvic CT scans and the potential later risk of radiation-induced neoplasm and teratogenic outcomes in these patients. Objective: To assess the diagnostic quality of CT images of the paediatric pelvis using either reduced mAs or increased pitch compared with standard settings. Materials and methods: A prospective study of pelvic CT scans of 105 paediatric patients was performed using one of three protocols: (1) 31 at a standard protocol of 200 mA with rotation time of 0.75 s at 120 kVp and a pitch factor approximating 1.4; (2) 31 at increased pitch factor approaching 2 and 200 mA; and (3) 43 at a reduced setting of 100 mA and a pitch factor of 1.4. All other settings remained the same in all three groups. Image quality was assessed by radiologists blinded to the protocol used in each scan. Results: No significant difference was found between the quality of images acquired at standard settings and those acquired at half the standard mAs. The use of increased pitch factor resulted in a higher proportion of poor images. Conclusions: Images acquired at 120 kVp using 75 mAs are equivalent in diagnostic quality to those acquired at 150 mAs. Reduced settings can provide useful imaging of the paediatric pelvis and should be considered as a standard protocol in these situations.
Resumo:
In this paper use consider the problem of providing standard errors of the component means in normal mixture models fitted to univariate or multivariate data by maximum likelihood via the EM algorithm. Two methods of estimation of the standard errors are considered: the standard information-based method and the computationally-intensive bootstrap method. They are compared empirically by their application to three real data sets and by a small-scale Monte Carlo experiment.