39 resultados para Hypothalamy-pituitary-adrenal axis
em University of Queensland eSpace - Australia
Resumo:
Recent investigations have implicated the medial prefrontal cortex (mPFC) in modulation of subcortical pathways that contribute to the generation of behavioural, autonomic and endocrine responses to stress. However, little is known of the mechanisms involved. One of the key neurotransmitters involved in mPFC function is dopamine, and we therefore aimed, in this investigation, to examine the role of mPFC dopamine in response to stress in Wistar rats. In this regard, we infused dopamine antagonists SCH23390 or sulpiride into the mPFC via retrodialysis. We then examined changes in numbers of cells expressing the c-fos immediate-early gene protein product, Fos, in subcortical neuronal populations associated with regulation of hypothalamic-pituitary-adrenal (HPA) axis stress responses in response to either of two stressors; systemic injection of interleukin-1beta, or air puff. The D-1 antagonist, SCH23390, and the D-2 antagonist, sulpiride, both attenuated expression of Fos in the medial parvocellular hypothalamic paraventricular nucleus (mpPVN) corticotropin-releasing factor cells at the apex of the HPA axis, as well as in most extra-hypothalamic brain regions examined in response to interleukin-1beta. By contrast, SCH23390 failed to affect Fos expression in response to air puff in any brain region examined, while sulpiride resulted in an attenuation of the air puff-induced response in only the mpPVN and the bed nucleus of the stria terminalis. These results indicate that the mPFC differentially processes the response to different stressors and that the two types of dopamine receptor may have different roles.
Resumo:
Apomorphine is a dopamine receptor agonist that was recently licensed for the treatment of erectile dysfunction. However, although sexual activity can be stressful, there has been little investigation into whether treatments for erectile dysfunction affect stress responses. We have examined whether a single dose of apomorphine, sufficient to produce penile erections (50 mug/kg, i.a.), can alter basal or stress-induced plasma ACTH levels, or activity of central pathways thought to control the hypothalamic-pituitary-adrenal axis in rats. An immune challenge (interleukin-1beta, 1 mug/kg, i.a.) was used as a physical stressor while sound stress (100 dB white noise, 30 min) was used as a psychological stressor. Intravascular administration of apomorphine had no effect on basal ACTH levels but did substantially increase the number of Fos-positive amygdala and nucleus tractus solitarius catecholamine cells. Administration of apomorphine prior to immune challenge augmented the normal ACTH response to this stressor at 90 min and there was a corresponding increase in the number of Fos-positive paraventricular nucleus corticotropin-releasing factor cells, paraventricular nucleus oxytocin cells and nucleus tractus solitarius catecholamine cells. However, apomorphine treatment did not alter ACTH or Fos responses to sound stress. These data suggest that erection-inducing levels of apomorphine interfere with hypothalamic-pituitary-adrenal axis inhibitory feedback mechanisms in response to a physical stressor, but have no effect on the response to a psychological stressor. Consequently, it is likely that apomorphine acts on a hypothalamic-pituitary-adrenal axis control pathway that is unique to physical stressors. A candidate for this site of action is the nucleus tractus solitarius catecholamine cell population and, in particular, A2 noradrenergic neurons. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Previous studies have shown that the medial prefrontal cortex can suppress the hypothalamic-pituitary-adrenal axis response to stress. However, this effect appears to vary with the type of stressor. Furthermore, the absence of direct projections between the medial prefrontal cortex and corticotropin-releasing factor cells at the apex of the hypothalamic-pituitary-adrenal axis suggest that other brain regions must act as a relay when this inhibitory mechanism is activated. In the present study, we first established that electrolytic lesions involving the prelimbic and infralimbic medial prefrontal cortex increased plasma adrenocorticotropic hormone levels seen in response to a physical stressor, the systemic delivery of interleukin-1beta. However, medial prefrontal cortex lesions did not alter plasma adrenocorticotropic hormone levels seen in response to a psychological stressor, noise. To identify brain regions that might mediate the effect of medial prefrontal cortex lesions on hypothalamic-pituitary-adrenal axis responses to systemic interleukin-1beta, we next mapped the effects of similar lesions on interleukin-1beta-induced Fos expression in regions previously shown to regulate the hypothalamic-pituitary-adrenal axis response to this stressor. It was found that medial prefrontal cortex lesions reduced the number of Fos-positive cells in the ventral aspect of the bed nucleus of the stria terminalis. However, the final experiment, which involved combining retrograde tracing with Fos immunolabelling, revealed that bed nucleus of the stria terminalis-projecting medial prefrontal cortex neurons were largely separate from medial prefrontal cortex neurons recruited by systemic interleukin-1beta, an outcome that is difficult to reconcile with a simple medial prefrontal cortex-bed nucleus of the stria terminalis-corticotropin-releasing factor cell control circuit.
Resumo:
Prolactin and the expression of suppressor of cytokine signaling-3 in the sheep adrenal gland before birth. Am J Physiol Regul Integr Comp Physiol 291: R1399-R1405, 2006. First published June 29, 2006; doi: 10.1152/ajpregu.00252.2006.-The fetal pituitary-adrenal axis plays a key role in the fetal response to intrauterine stress and in the timing of parturition. The fetal sheep adrenal gland is relatively refractory to stimulation in midgestation (90-120 days) before the prepartum activation, which occurs around 135 days gestation (term = 147 +/- 3 days). The mechanisms underlying the switch from adrenal quiescence to activation are unclear. Therefore, we have investigated the expression of suppressor of cytokine signaling-3 (SOCS-3), a putative inhibitor of tissue growth in the fetal sheep adrenal between 50 and 145 days gestation and in the adrenal of the growth-restricted fetal sheep in late gestation. SOCS-3 is activated by a range of cytokines, including prolactin (PRL), and we have, therefore, determined whether PRL administered in vivo or in vitro stimulates SOCS-3 mRNA expression in the fetal adrenal in late gestation. There was a decrease (P < 0.005) in SOCS-3 expression in the fetal adrenal between 54 and 133 days and between 141 and 144 days gestation. Infusion of the dopaminergic agonist, bromocriptine, which suppressed fetal PRL concentrations but did not decrease adrenal SOCS-3 mRNA expression. PRL administration, however, significantly increased adrenal SOCS-3 mRNA expression (P < 0.05). Similarly, there was an increase (P < 0.05) in SOCS-3 mRNA expression in adrenocortical cells in vitro after exposure to PRL (50 ng/ml). Placental and fetal growth restriction had no effect on SOCS-3 expression in the adrenal during late gestation. In summary, the decrease in the expression of the inhibitor SOCS-3 after 133 days gestation may be permissive for a subsequent increase in fetal adrenal growth before birth. We conclude that factors other than PRL act to maintain adrenal SOCS-3 mRNA expression before 133 days gestation but that acute elevations of PRL can act to upregulate adrenal SOCS-3 expression in the sheep fetus during late gestation.
Resumo:
Chronic fatigue syndrome (CFS) is characterized by idiopathic fatigue of greater than 6 months' duration with postexertional exacerbation and many other symptoms. A trend toward relative hypocortisolism is described in CFS. Twin and family studies indicate a substantial genetic etiologic component to CFS. Recently, severe corticosteroid-binding globulin (CBG) gene mutations have been associated with CFS in isolated kindreds. Human leukocyte elastase, an enzyme important in CBG catabolism at inflammatory sites, is reported to be elevated in CFS. We hypothesized that CBG gene polymorphisms may act as a genetic risk factor for CFS. A total of 248 patients with CFS defined by Centers for Disease Control criteria, and 248 controls were recruited. Sequencing and restriction enzyme testing of the CBG gene coding region allowed detection of severe CBG gene mutations and a common exon 3 polymorphism (c.825G --> T, Ala-Ser(224)). Plasma CBG levels were measured in 125 CFS patients and 198 controls by radioimmunoassay. Total and free (calculated and measured) cortisol levels were ascertained in single samples between 8-10 a.m. The age of onset (mid 30s) and gender ratio (2.2:1, female:male) of the patients were similar to those reported in U.S. epidemiologic studies. A trend toward a preponderance of serine(224) homozygosity among the CFS patients was noted, compared with controls (chi(2) = 5.31, P = 0.07). Immunoreactive-CBG (IR-CBG) levels were higher in Serine/Alanine (Ser/Ala) than Ala/Ala subjects and higher again in Ser/Ser subjects, this effect was strongest in controls; Ser/Ser: 46.1 +/- 1.8 (n = 31, P = 0.03) vs. Ser/Ala: 42.4 +/- 1.0 (n = 56, P = 0.05) vs. Ala/Ala: 40.8 +/- 1.7 mug/mL (n = 21). Despite higher CBG levels, there was a nonsignificant trend toward lower total and free plasma cortisol in serine allele positive patients, total cortisol: Ser/Ser: 13.3 +/- 1.4 (n = 34) vs. Ser/Ala: 14.0 +/- 0.7 (n = 66) vs. Ala/Ala: 15.4 +/- 1.0 (n = 23). Homozygosity for the serine allele of the CBG gene may predispose to CFS, perhaps due to an effect on hypothalamic-pituitary-adrenal axis function related to altered CBG-cortisol transport function or immune-cortisol interactions.
Resumo:
Post-traumatic stress disorder (PTSD) is reported in some studies to be associated with increased glucocorticoid (GC) sensitivity. Two common glucocorticoid receptor (GR) potymorphisms (N363S and 8cll) appear to contribute to the population variance in GC sensitivity. There is some evidence that there may be a genetic predisposition to PTSD. Hence we studied 118 Vietnam war veterans with PTSD for (i) GR polymorphisms, particularly the N363S and the Bcll polymorphisms which are thought to be GC sensitising, and (ii) two measures of GC sensitivity, the tow-dose 0.25 mg dexamethasone suppression test (LD-DST) and the dermal vasoconstrictor assay (DVVA). The DST and GR polymorphisms were also performed in 42 combat exposed Vietnam war veterans without PTSD. Basal plasma cortisol levels were not significantly different in PTSD (399.5 +/- 19.2 nmol/L, N=75) and controls (348.6 +/- 23.0 nmol/L, N = 33) and the LD-DST resulted in similar cortisol suppression in both groups (45.6 +/- 3.2 vs. 40.8 +/- 4.1%). The cortisol suppression in PTSD patients does not correlate with Clinician Administered PTSD Scores (CAPS), however there was a significant association between the Bcll GG genotype and low basal cortisol levels in PTSD (P=0.048). The response to the DVVA was similar to controls (945 +/- 122, N = 106 vs. 730 +/- 236, N = 28, P = 0.42). PTSD patients with the GG genotype, however, tended to be more responsive to DVVA and in this group the DVVA correlated with higher CAPS scores. The only exon 2 GR polymorphisms detected were the R23K and N363S. Heterozygosity for the N363S variant in PTSD, at 5.1% was not more prevalent than in other population studies of the N363S polymorphism in Caucasians (6.0-14.8%). The GG genotype of the Bcll polymorphism found to be associated with increased GC sensitivity in many studies showed a tendency towards increased response with DVVA and correlated with higher CAPS scores. In conclusion, the N363S and Bcll GR polymorphisms were not more frequent in PTSD patients than controls and reported population frequencies. Our PTSD group did not display GC hypersensitivity, as measured by the LD-DST and DVVA. In a subset of PTSD patients with the Bcll GG genotype, CAPS scores and basal cortisol Levels were negatively correlated. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The medial prefrontal cortex (mPFC) has been strongly implicated in control of the paraventricular nucleus of the hypothalamus (PVN) response to stress. Because of the paucity of direct projections from the mPFC to the PVN, we sought to investigate possible brain regions that might act as a relay between the two during psychological stress. Bilateral ibotenic acid lesions of the rat mPFC enhanced the number of Fos-immunoreactive cells seen in the PVN after exposure to the psychological stressor, air puff. Altered neuronal recruitment was seen in only one of the candidate relay populations examined, the ventral bed nucleus of the stria terminalis (vBNST). Furthermore, bilateral ibotenic acid lesions of the BNST caused a significant attenuation of the PVN response to air puff. To better characterize the structural relationships between the mPFC and PVN, retrograde tracing studies were conducted examining Fos expression in cells retrogradely labeled with cholera toxin b subunit (CTb) from the PVN and the BNST. Results obtained were consistent with an important role for both the mPFC and BNST in the mpPVN CRF cell response to air puff. We suggest a set of connections whereby a direct PVN projection from the ipsilateral vBNST is involved in the mpPVN response to air puff and this may, in turn, be modulated by an indirect projection from the mPFC to the BNST. (C) 2004 Wiley-Liss, Inc.
Resumo:
In opiate addicts or patients receiving morphine treatment, it has been reported that the immune system is often compromised. The mechanisms responsible for the adverse effects of opioids on responses to infection are not clear but it is possible that central and/or peripheral opioid receptors may be important. We have utilised an experimental immune challenge model in rats, the systemic administration of the human pro-inflammatory cytokine interleukin-1 beta (IL-1 beta) to study the effects of selectively blocking peripheral opioid receptors only (using naloxone methiodide) or after blocking both central and peripheral opioid receptors (using naloxone). Pre-treatment with naloxone methiodide decreased (15%) IL-1 beta-induced Fos-immunoreactivity (Fos-IR) in medial parvocellular paraventricular nucleus (mPVN) corticotropin-releasing hormone (CRH) neurons but increased responses in the ventrolateral medulla (VLM) C1 (65%) and nucleus tractus solitarius (NTS) A2 (110%) catecholamine cell groups and area postrema (136%). However no effect of blocking peripheral opioid receptors was detected in the central nucleus of the amygdala (CeA) or dorsal bed nucleus of the stria terminalis (BNST). We next determined the effect of blocking both central and peripheral opioid receptors with naloxone and, when compared to the naloxone methiodide pre-treated group, a further 60% decrease in Fos-IR mPVN CRH neurons induced by IL-1 beta was detected, which was attributed to block of central opioid receptors. Similar comparisons also detected decreases in Fos-IR neurons induced by IL-1 beta in the VLM A1, VLM C1 and NTS A2 catecholamine cell groups, area postrema, and parabrachial nucleus. In contrast, pre-treatment with naloxone increased Fos-IR neurons in CeA (98%) and dorsal BNST (72%). These results provide novel evidence that endogenous opioids can influence central neural responses to systemic IL-1 beta and also suggest that the differential patterns of activation may arise because of actions at central and/or peripheral opioid receptors that might be important in regulating behavioural, hypothalamic-pituitary-adrenal axis and sympathetic nervous system responses during an immune challenge. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
By most accounts the psychological stressor restraint produces a distinct pattern of neuronal activation in the brain. However, some evidence is incongruous with this pattern, leading us to propose that the restraint- induced pattern in the central nervous system might depend on the duration of restraint used. We therefore determined the pattern of neuronal activation ( as indicated by the presence of Fos protein) seen in the paraventricular nucleus (PVN), bed nucleus of the stria terminalis, amygdala, locus coeruleus, nucleus tractus solitarius (NTS), ventrolateral medulla (VLM) and thoracic spinal cord of the rat in response to 0, 15, 30 or 60 min periods of restraint. We found that although a number of cell groups displayed a linear increase in activity with increasing durations of restraint ( e. g. hypothalamic corticotrophin-releasing factor (CRF) cells, medial amygdala neurons and sympathetic preganglionic neurons of the thoracic spinal cord), a number of cell groups did not. For example, in the central amygdala restraint produced both a decrease in CRF cell activity and an increase in non-CRF cell activity. In the locus coeruleus, noradrenergic neurons did not display Fos in response to 15 min of restraint, but were significantly activated by 30 or 60 min restraint. After 30 or 60 min restraint a greater degree of activation of more rostral A1 noradrenergic neurons was observed compared with the pattern of A1 noradrenergic neurons in response to 15 min restraint. The results of this study demonstrate that restraint stress duration determines the amount and the pattern of neuronal activation seen in response to this psychological stressor.
Resumo:
Orphan nuclear receptors: therapeutic opportunities in skeletal muscle. Am J Physiol Cell Physiol 291: C203-C217, 2006; doi: 10.1152/ajpcell. 00476.2005.-Nuclear hormone receptors (NRs) are ligand-dependent transcription factors that bind DNA and translate physiological signals into gene regulation. The therapeutic utility of NRs is underscored by the diversity of drugs created to manage dysfunctional hormone signaling in the context of reproductive biology, inflammation, dermatology, cancer, and metabolic disease. For example, drugs that target nuclear receptors generate over $10 billion in annual sales. Almost two decades ago, gene products were identified that belonged to the NR superfamily on the basis of DNA and protein sequence identity. However, the endogenous and synthetic small molecules that modulate their action were not known, and they were denoted orphan NRs. Many of the remaining orphan NRs are highly enriched in energy-demanding major mass tissues, including skeletal muscle, brown and white adipose, brain, liver, and kidney. This review focuses on recently adopted and orphan NR function in skeletal muscle, a tissue that accounts for similar to 35% of the total body mass and energy expenditure, and is a major site of fatty acid and glucose utilization. Moreover, this lean tissue is involved in cholesterol efflux and secretes that control energy expenditure and adiposity. Consequently, muscle has a significant role in insulin sensitivity, the blood lipid profile, and energy balance. Accordingly, skeletal muscle plays a considerable role in the progression of dyslipidemia, diabetes, and obesity. These are risk factors for cardiovascular disease, which is the the foremost cause of global mortality (> 16.7 million deaths in 2003). Therefore, it is not surprising that orphan NRs and skeletal muscle are emerging as therapeutic candidates in the battle against dyslipidemia, diabetes, obesity, and cardiovascular disease.
Resumo:
Systemic infection activates the hypothalamic-pituitary-adrenal (HPA) axis, and brainstem catecholamine cells have been shown to contribute to this response. However, recent work also suggests an important role for the central amygdala (CeA). Because direct connections between the CeA and the hypothalamic apex of the HPA axis are minimal, the present study investigated whether the bed nucleus of the stria terminalis (BNST) might act as a relay between them. This was done by using an animal model of acute systemic infection involving intravascular delivery of the proinflammatory cytokine interleukin-1 (IL-1, 1 g/kg). Unilateral ibotenic acid lesions encompassing the ventral BNST significantly reduced both IL-1-induced increases in Fos immunoreactivity in corticotropin-releasing factor (CRF) cells of the hypothalamic paraventricular nucleus (PVN) and corresponding increases in adrenocorticotropic hormone (ACTH) secretion. Similar lesions had no effect on CRF cell responses to physical restraint, suggesting that the effects of BNST lesions were not due to a nonspecific effect on stress responses. In further studies, we examined the functional connections between PVN, BNST, and CeA by combining retrograde tracing with mapping of IL-1-induced increases in Fos in BNST and CeA cells. In the case of the BNST, these studies showed that systemic IL-1 administration recruits ventral BNST cells that project directly to the PVN. In the case of the CeA, the results obtained were consistent with an arrangement whereby lateral CeA cells recruited by systemic IL-1 could regulate the activity of medial CeA cells projecting directly to the BNST. In conclusion, the present findings are consistent with the hypothesis that the BNST acts as a relay between the CeA and PVN, thereby contributing to CeA modulation of hypophysiotropic CRF cell responses to systemic administration of IL-1.
Resumo:
The growth performance and endocrine responses of male weaner pigs (3 to 8 weeks of age) was evaluated in two different environments (clean and dirty) and housing (single or groups of 10 pigs/pen) conditions. The dirty environment contained significantly elevated ammonia, carbon dioxide and dust levels compared with the clean environment. Pigs grew faster and consumed more feed in the clean environment and this was associated with reduced plasma cortisol concentrations compared with pigs in the dirty environment. Pigs housed in groups in the dirty environment had increased β-endorphin and decreased IGF-I concentrations compared to group housed pigs in the clean environment. Feed conversion efficiency did not differ due to environment or group housing. Plasma concentration of cortisol, p-endorphin, IGF-I and IGF-II did not differ between single and group housed pigs. Activity of the hypothalamic-pituitary-adrenal (HPA) axis was greater in response to environmental conditions than group housing, and this was associated with reduced growth in weaner pigs. © 2004 Elsevier B.V. All rights reserved.
Resumo:
Both physical and psychological stressors recruit catecholamine cells (CA) located in the ventrolateral medulla (VLM) and the nucleus of the solitary tract (NTS). In the case of physical stressors, this effect is initiated by signals that first access the central nervous system at or below the level of the medulla. For psychological stressors, however, CA cell recruitment depends on higher structures within the neuraxis. Indeed, we have recently provided evidence of a pivotal role for the medial amygdala (MeA) in this regard, although such a role must involve a relay, as MeA neurons do not project directly to the medulla. However, some of the MeA neurons that respond to psychological stress have been found to project to the hypothalamic paraventricular nucleus (PVN), a structure that provides significant input to the medulla. To determine whether the PVN might regulate medullary CA cell responses to psychological stress, animals were prepared with unilateral injections of the neurotoxin ibotenic acid into the PVN (Experiment 1), or with unilateral injections of the retrograde tracer wheat germ agglutinin-gold (WGA-Au) into the CA cell columns of the VLM or NTS (Experiment 2). Seven days later, animals were subjected to a psychological stressor (restraint; 15 minutes), and their brains were subsequently processed for Fos plus appropriate cytoplasmic markers (Experiment 1), or Fos plus WGA-Au (Experiment 2). PVN lesions significantly suppressed the stress-related induction of Fos in both VLM and NTS CA cells, whereas tracer deposits in the VLM or NTS retrogradely labeled substantial numbers of PVN cells that were also Fos-positive after stress. Considered in concert with previous results, these data suggest that the activation of medullary CA cells in response to psychological stress may involve a critical input from the PVN. (C) 2004 Wiley-Liss, Inc.