3 resultados para Hydrus
em University of Queensland eSpace - Australia
Resumo:
Hysteresis models that eliminate the artificial pumping errors associated with the Kool-Parker (KP) soil moisture hysteresis model, such as the Parker-Lenhard (PL) method, can be computationally demanding in unsaturated transport models since they need to retain the wetting-drying history of the system. The pumping errors in these models need to be eliminated for correct simulation of cyclical systems (e.g. transport above a tidally forced watertable, infiltration and redistribution under periodic irrigation) if the soils exhibit significant hysteresis. A modification is made here to the PL method that allows it to be more readily applied to numerical models by eliminating the need to store a large number of soil moisture reversal points. The modified-PL method largely eliminates any artificial pumping error and so essentially retains the accuracy of the original PL approach. The modified-PL method is implemented in HYDRUS-1D (version 2.0), which is then used to simulate cyclic capillary fringe dynamics to show the influence of removing artificial pumping errors and to demonstrate the ease of implementation. Artificial pumping errors are shown to be significant for the soils and system characteristics used here in numerical experiments of transport above a fluctuating watertable. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The treatment and hydraulic mechanisms in a septic tank-soil absorption system ( SAS) are highly influenced by the clogging layer or biomat zone which develops on bottom and lower sidewall surfaces within the trench. Flow rates through the biomat and sub-biomat zones are governed largely by the biomat hydraulic properties (resistance and hydraulic conductivity) and the unsaturated hydraulic conductivity of the underlying soil. One- and 2-dimensional models were used to investigate the relative importance of sidewall and vertical flow rates and pathways in SAS. Results of 1-dimensional modelling show that several orders of magnitude variation in saturated hydraulic conductivity (Ks) reduce to a 1 order of magnitude variation in long-term flow rates. To increase the reliability of prediction of septic trench hydrology, HYDRUS-2D was used to model 2-dimensional flow. In the permeable soils, under high trench loading, effluent preferentially flowed in the upper region of the trench where no resistant biomat was present (the exfiltration zone). By comparison, flow was more evenly partitioned between the biomat zones and the exfiltration zones of the low permeability soil. An increase in effluent infiltration corresponded with a greater availability of exfiltration zone, rather than a lower resistance of biomat. Results of modelling simulations demonstrated the important role that a permeable A horizon may play in limiting surface surcharge of effluent under high trench hydraulic loading.
Resumo:
This paper describes effluent flow dynamics within a septic absorption system and the prediction of flow through the biomat and sub-biomat zone. Using soil hydraulic properties in a one dimensional model we demonstrate how soil hydraulic properties interact with biomat resistances to determine long-term acceptance rate (LTAR). The LTAR is a key parameter used in the Australian and New Zealand Standard AS1547:2000 to calculate the area of trench required to ensure trenches are not overloaded. Results show that several orders of magnitude variation in saturated hydraulic conductivity (Ks) collapse to a one order of magnitude variation in LTAR. These results are calculated from a model using basic flow theory, allowing LTAR to be estimated for any combination of biomat resistance and soil hydraulic properties. To increase the reliability of prediction of septic trench hydrology, HYDRUS 2D was used to model two dimensional flow. For more permeable soils, the exfiltration zone above sidewall biomat growth is shown to be a key pathway for excess effluent flow.