21 resultados para Hydrogen pressures
em University of Queensland eSpace - Australia
Resumo:
Two aspects of hydrogen-air non-equilibrium chemistry related to scramjets are nozzle freezing and a process called 'kinetic afterburning' which involves continuation of combustion after expansion in the nozzle. These effects were investigated numerically and experimentally with a model scramjet combustion chamber and thrust nozzle combination. The overall model length was 0.5m, while precombustion Mach numbers of 3.1 +/- 0.3 and precombustion temperatures ranging from 740K to 1,400K were involved. Nozzle freezing was investigated at precombustion pressures of 190kPa and higher, and it was found that the nozzle thrusts were within 6% of values obtained from finite rate numerical calculations, which were within 7% of equilibrium calculations. When precombustion pressures of 70kPa or less were used, kinetic afterburning was found to be partly responsible for thrust production, in both the numerical calculations and the experiments. Kinetic afterburning offers a means of extending the operating Mach number range of a fixed geometry scramjet.
Resumo:
Error condition detected Although coal may be viewed as a dirty fuel due to its high greenhouse emissions when combusted, a strong case can be made for coal to be a major world source of clean H-2 energy. Apart from the fact that resources of coal will outlast oil and natural gas by centuries, there is a shift towards developing environmentally benign coal technologies, which can lead to high energy conversion efficiencies and low air pollution emissions as compared to conventional coal fired power generation plant. There are currently several world research and industrial development projects in the areas of Integrated Gasification Combined Cycles (IGCC) and Integrated Gasification Fuel Cell (IGFC) systems. In such systems, there is a need to integrate complex unit operations including gasifiers, gas separation and cleaning units, water gas shift reactors, turbines, heat exchangers, steam generators and fuel cells. IGFC systems tested in the USA, Europe and Japan employing gasifiers (Texaco, Lurgi and Eagle) and fuel cells have resulted in energy conversions at efficiency of 47.5% (HHV) which is much higher than the 30-35% efficiency of conventional coal fired power generation. Solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are the front runners in energy production from coal gases. These fuel cells can operate at high temperatures and are robust to gas poisoning impurities. IGCC and IGFC technologies are expensive and currently economically uncompetitive as compared to established and mature power generation technology. However, further efficiency and technology improvements coupled with world pressures on limitation of greenhouse gases and other gaseous pollutants could make IGCC/IGFC technically and economically viable for hydrogen production and utilisation in clean and environmentally benign energy systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fuel cell systems offer excellent efficiencies when compared to internal combustion engines, which result in reduced fuel consumption and greenhouse gas emissions. One of the areas requiring research for the success of fuel cell technology is the H2 fuel purification to reduce CO, which is a poison to fuel cells. Molecular sieve silica (MSS) membranes have a potential application in this area. In this work showed activated transport, a characteristic of ultramicroporous (dp
Resumo:
Background and aims-The colons of patients with pneumatosis cystoides coli produce excessive H-2. Exposure to alkyl halides could explain this. Six consecutive patients who had pneumatosis cystoides coli while taking chloral hydrate (1-5+ g/day) are reported. Patients 2 and 3 were investigated after they had ceased chloral hydrate treatment. One produced methane, the other did not. (Pneumatosis cystoides coli patients are non-methanogenic according to the literature.) Both had overnight fasting breath H-2 of less than 10 ppm. A literature review disclosed just one patient who was using chloral at the time of diagnosed pneumatosis cystoides coli, but an epidemic of the disease in workers exposed to trichloroethylene. Methods-(i) In vitro experiments with human faeces: chloral or closely related alkyl halides were added to anaerobic faecal cultures derived from four methane-producing and three non-methanogenic human subjects. H-2 and CH4 gases were measured. (ii) In vivo animal experiment: chloral hydrate was added to drinking water of four Wistar rats, and faecal HI compared with control rats. Results-Alkyl halides increased H-2 up to 900 times in methanogenic and 10 times in non-methanogenic faecal cultures. The K-i of chloral was 0.2 mM. Methanogenesis was inhibited in concert with the increase in net H-2. In the rat experiment, chloral hydrate increased H-2 10 times, but did not cause pneumatosis. Conclusions-Chloral and trichloroethylene are alkyl halides chemically similar to chloroform, a potent inhibitor of H-2 consumption by methanogens and acetogens. These bacteria are the most important H-2-consuming species in the colon. It is postulated that exposure to these alkyl halides increases net H-2 production, which sets the scene for counterperfusion supersaturation and the formation of gas cysts. In recent times, very low prescribing rates for chloral have caused primary pneumatosis cystoides to become extremely rare. As with primary pneumatosis, secondary pneumatosis cystoides, which occurs if there is small bowel bacterial overgrowth distal to a proximally located gut obstruction, is predicted by counterperfusion supersaturation. Inherent unsaturation due to metabolism of O-2 is a safety factor, which could explain why gas bubbles do not form more often in tissue with high H-2 tension.
Resumo:
The hydrogenation of cyclohexene over palladium supported in a microporous gamma-alumina pellet is studied thermogravimetrically with a view to measuring the extent of partial internal wetting associated with the different steady state branches. As many as three steady state branches having significantly different degrees of internal wetting and reaction rates, with transitions between them, are confirmed from observations of catalyst weight change. It is seen that with reduction in catalyst activity the middle branch, obtained by condensation from a vapor filled pellet, is much more prominent without showing an evaporative transition for the range of hydrogen partial pressures used here. The catalyst activity is therefore an important parameter affecting the structure of the steady state branches. Hysteresis effects are found to occur, and the thermogravimetric results also confirm the importance of history in determining the catalyst state. The measured degree of wetting is in accordance with that estimated from a mathematical model incorporating capillary condensation effects in addition to reaction-diffusion phenomena. The same model also satisfactorily interprets the reaction rate variations and transitions seen in the present work.
Resumo:
This paper studied the influence of hydrogen and water vapour environments on the plastic behaviour in the vicinity of the crack tip for AISI 4340. Hydrogen and water vapour (at a pressure of 15 Torr) significantly increased the crack tip opening displacement. The crack tip strain distribution in 15 Torr hydrogen was significantly different to that measured in vacuum. In the presence of sufficient hydrogen, the plastic zone was larger, was elongated in the direction of crack propagation and moreover there was significant creep. These observations support the hydrogen enhanced localised plasticity model for hydrogen embrittlement in this steel. The strain distribution in the presence of water vapour also suggests that SCC in AISI 4340 occurs via the hydrogen enhanced localised plasticity mechanism. (C) 1999 Kluwer Academic Publishers.
Resumo:
The macrocyclic cobalt hexaamines [Co(trans-diammac)](3+) and [Co(cis-diammac)](3+) (diammac = 6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) are capable of reducing the overpotential for hydrogen evolution on a mercury cathode in aqueous solution. Protons are reduced in a catalytic process involving reoxidation of the Co-II species to its parent Co-III complex. The cycle is robust at neutral pH with no decomposition of catalyst. The stability of the [Co(trans-diammac)](2+) and [Co(cis-diammac)](2+) complexes depends on the pH of the solution and the coordinating properties of the supporting electrolyte. Electrochemical studies indicate that the adsorbed Co-II complex on the surface of mercury is the active catalyst for the reduction of protons to dihydrogen.
Resumo:
A dual catalyst bed system (Au/Fe2O3 + Pt-Pd/Al2O3) for eliminating hydrogen from the CO2 feed gas in urea synthesis is found to be far superior to commercially available and patented catalysts in catalytic activity. At relatively low temperatures, hydrogen is eliminated and coexistent CO is also oxidized completely to useful CO2. This can avoid effectively the accidental explosion of hydrogen-oxygen-ammonia mixed gases, thus ensuring the safety of urea synthesis.
Resumo:
We present a new set of deep H I observations of member galaxies of the Fornax cluster. We detected 35 cluster galaxies in H I. The resulting sample, the most comprehensive to date, is used to investigate the distribution of neutral hydrogen in the cluster galaxies. We compare the H I content of the detected cluster galaxies with that of field galaxies by measuring H I mass-to-light ratios and the H I deficiency parameter of Solanes et al. (1996). The mean H I mass-to-light ratio of the cluster galaxies is 0.68 +/- 0.15, significantly lower than for a sample of H I-selected field galaxies (1.15 +/- 0.10), although not as low as in the Virgo cluster (0.45 +/- 0.03). In addition, the H I content of two cluster galaxies (NGC1316C and NGC1326B) appears to have been affected by interactions. The mean H I deficiency for the cluster is 0.38 +/- 0.09 (for galaxy types T = 1-6), significantly greater than for the field sample (0.05 +/- 0.03). Both these tests show that Fornax cluster galaxies are H I-deficient compared to field galaxies. The kinematics of the cluster galaxies suggests that the H I deficiency may be caused by ram-pressure stripping of galaxies on orbits that pass close to the cluster core. We also derive the most complete B-band Tully-Fisher relation of inclined spiral galaxies in Fornax. A subcluster in the South-West of the main cluster contributes considerably to the scatter. The scatter for galaxies in the main cluster alone is 0.50 mag, which is slightly larger than the intrinsic scatter of 0.4 mag. We use the Tully-Fisher relation to derive a distance modulus of Fornax relative to the Virgo cluster of -0.38 +/- 0.14 mag. The galaxies in the subcluster are (1.0 +/- 0.5) mag brighter than the galaxies of the main cluster, indicating that they are situated in the foreground. With their mean velocity 95 km s(-1) higher than that of the main cluster we conclude that the subcluster is falling into the main Fornax cluster.
Resumo:
Heterogeneous copper catalyst was developed using the mesoporous molecular sieve MCM-41 as the catalyst support. Copper was impregnated onto the support. Catalysts with different copper loadings were obtained. The performance of the developed catalysts was evaluated in photochemically enhanced oxidation of phenol using hydrogen peroxide as the oxidant. The catalyst was found to significantly increase the oxidation rate and enhance the removal level of phenol with UV light present. The effects of copper loading on the catalyst, photo (UV), H2O2 concentration, and catalyst dosage on the photo-oxidation of phenol were studied. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Using data from the H I Parkes All Sky Survey (HIPASS), we have searched for neutral hydrogen in galaxies in a region similar to25x25 deg(2) centred on NGC 1399, the nominal centre of the Fornax cluster. Within a velocity search range of 300-3700 km s(-1) and to a 3sigma lower flux limit of similar to40 mJy, 110 galaxies with H I emission were detected, one of which is previously uncatalogued. None of the detections has early-type morphology. Previously unknown velocities for 14 galaxies have been determined, with a further four velocity measurements being significantly dissimilar to published values. Identification of an optical counterpart is relatively unambiguous for more than similar to90 per cent of our H I galaxies. The galaxies appear to be embedded in a sheet at the cluster velocity which extends for more than 30degrees across the search area. At the nominal cluster distance of similar to20 Mpc, this corresponds to an elongated structure more than 10 Mpc in extent. A velocity gradient across the structure is detected, with radial velocities increasing by similar to500 km s(-1) from south-east to north-west. The clustering of galaxies evident in optical surveys is only weakly suggested in the spatial distribution of our H I detections. Of 62 H I detections within a 10degrees projected radius of the cluster centre, only two are within the core region (projected radius
Resumo:
The stress corrosion cracking (SCC) behavior and pre-exposure embrittlement of AZ31 magnesium alloy have been studied by slow strain rate tensile (SSRT) tests in this paper. It is showed that AZ31 sheet material is susceptible to SCC in distilled water, ASTM D1.387 solution, 0.01 M NaCl and 0.1 M NaCl solution. The AZ31 magnesium alloy also becomes embrittled if pre-exposed to 0.01 M NaCl solution prior to tensile testing. The degree of embrittlement increased with increasing the pre-exposure time, It is proposed that both the pre-exposure embrittlement and SCC were due to hydrogen which reduces the cohesive strength. i,e,. hydrogen embrittlement, (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Encyclopedia of Nanoscience and Nanotechnology® is the World's first encyclopedia ever published in the field of nanotechnology. The 10-volume Encyclopedia is an unprecedented single reference source that provides ideal introduction and overview of most recent advances and emerging new aspects of nanotechnology spanning from science to engineering to medicine. Although there are many books/handbook and journals focused on nanotechnology, no encyclopedic reference work has been published covering all aspects of nanoscale science and technology dealing with materials synthesis, processing, fabrication, probes, spectroscopy, physical properties, electronics, optics, mechanics, biotechnology, devices, etc. The Encyclopedia fills this gap to provide basic information on all fundamental and applied aspects of nanotechnology by drawing on two decades of pioneering research. It is the only scientific work of its kind since the beginning of the field of nanotechnology bringing together core knowledge and the very latest advances. It is written for all levels audience that allows non-scientists to understand the nanotechnology while providing up-to-date latest information to active scientists to experts in the field. This outstanding encyclopedia is an indispensable source for research professionals, technology investors and developers seeking the most up-to-date information on the nanotechnology among a wide range of disciplines from science to engineering to medicine.