3 resultados para Hybrid zone
em University of Queensland eSpace - Australia
Resumo:
Phylogeographic analyses of the fauna of the Australian wet tropics rainforest have provided strong evidence for long-term isolation of populations among allopatric refugia, yet typically there is no corresponding divergence in morphology. This system provides an opportunity to examine the consequences of geographic isolation, independent of morphological divergence, and thus to assess the broader significance of historical subdivisions revealed through mitochondrial DNA phylogeography. We have located and characterized a zone of secondary contact between two long isolated (mtDNA divergence > 15%) lineages of the skink Carlia rubrigularis using one mitochondrial and eight nuclear (two intron, six microsatellite) markers. This revealed a remarkably narrow (width < 3 km) hybrid zone with substantial linkage disequilibrium and strong deficits of heterozygotes at two of three nuclear loci with diagnostic alleles. Cline centers were coincident across loci. Using a novel form of likelihood analysis, we were unable to distinguish between sigmoidal and stepped cline shapes except at one nuclear locus for which the latter was inferred. Given estimated dispersal rates of 90-133 m x gen(-1/2) and assuming equilibrium, the observed cline widths suggest effective selection against heterozygotes of at least 22-49% and possibly as high as 70%. These observations reveal substantial postmating isolation, although the absence of consistent deviations from Hardy-Weinberg equilibrium at diagnostic loci suggests that there is little accompanying premating isolation. The tight geographic correspondence between transitions in mtDNA and those for nuclear genes and corresponding evidence for selection against hybrids indicates that these morphologically cryptic phylogroups could be considered as incipient species. Nonetheless, we caution against the use of mtDNA phylogeography as a sole criterion for defining species boundaries.
Resumo:
Ecological processes are central to the formation of new species when barriers to gene flow (reproductive isolation) evolve between populations as a result of ecologically-based divergent selection. Although laboratory and field studies provide evidence that 'ecological speciation' can occur, our understanding of the details of the process is incomplete. Here we review ecological speciation by considering its constituent components: an ecological source of divergent selection, a form of reproductive isolation, and a genetic mechanism linking the two. Sources of divergent selection include differences in environment or niche, certain forms of sexual selection, and the ecological interaction of populations. We explore the evidence for the contribution of each to ecological speciation. Forms of reproductive isolation are diverse and we discuss the likelihood that each may be involved in ecological speciation. Divergent selection on genes affecting ecological traits can be transmitted directly (via pleiotropy) or indirectly (via linkage disequilibrium) to genes causing reproductive isolation and we explore the consequences of both. Along with these components, we also discuss the geography and the genetic basis of ecological speciation. Throughout, we provide examples from nature, critically evaluate their quality, and highlight areas where more work is required.
Resumo:
Patterns of geographic parthenogenesis can provide insight into the ecological implications of the transition from sexual to parthenogenetic reproduction. We analysed quantitatively the environmental niches occupied by sexual and parthenogenetic geckos of the Heteronotia binoei complex in the Australian and zone. This complex consists of two independently derived maternal lineages of hybrid parthenogens, which, in turn, include two different triploid races that resulted from reciprocal backcrossing with the parental sexual taxa. The sexual progenitors are still extant and occupy very distinct environmental niches. The triploid parthenogenetic races are biased in their environmental niche towards those of the sexual races for which their genomes are biased and this dosage effect is apparent in both maternal lineages. Thus triploidy may have benefited the parthenogens through partial recovery of the parental niches. Although the parthenogens have a broader geographic distribution than their sexual progenitors, their environmental niche is narrower and biased towards one of the sexual races. In keeping with general patterns of geographic parthenogenesis. parthenogenetic H. binoei occupy a harsher environment than the sexual forms. occurring in regions of persistently low rainfall. Bioclimatic modelling suggests patterns of rainfall are important in limiting the distribution of sexual and parthenogenetic taxa. and extrapolation from the current bioclimatic profiles indicates potential for further eastward range expansion by the parthenogens.