86 resultados para Hybrid working machines
em University of Queensland eSpace - Australia
Resumo:
Few marine hybrid zones have been studied extensively, the major exception being the hybrid zone between the mussels Mytilus edulis and M. galloprovincialis in southwestern Europe. Here, we focus on two less studied hybrid zones that also involve Mytilus spp.; M. edulis and M. trossulus are sympatric and hybridize on both western and eastern coasts of the Atlantic Ocean. We review the dynamics of hybridization in these two hybrid zones and evaluate the role of local adaptation for maintaining species boundaries. In Scandinavia, hybridization and gene introgression is so extensive that no individuals with pure M. trossulus genotypes have been found. However, M. trossulus alleles are maintained at high frequencies in the extremely low salinity Baltic Sea for some allozyme genes. A synthesis of reciprocal transplantation experiments between different salinity regimes shows that unlinked Gpi and Pgm alleles change frequency following transplantation, such that post-transplantation allelic composition resembles native populations found in the same salinity. These experiments provide strong evidence for salinity adaptation at Gpi and Pgm (or genes linked to them). In the Canadian Maritimes, pure M. edulis and M. trossulus individuals are abundant, and limited data suggest that M. edulis predominates in low salinity and sheltered conditions, whereas M. trossulus are more abundant on the wave-exposed open coasts. We suggest that these conflicting patterns of species segregation are, in part, caused by local adaptation of Scandinavian M. trossulus to the extremely low salinity Baltic Sea environment.
Resumo:
Market-based transmission expansion planning gives information to investors on where is the most cost efficient place to invest and brings benefits to those who invest in this grid. However, both market issue and power system adequacy problems are system planers’ concern. In this paper, a hybrid probabilistic criterion of Expected Economical Loss (EEL) is proposed as an index to evaluate the systems’ overall expected economical losses during system operation in a competitive market. It stands on both investors’ and planner’s point of view and will further improves the traditional reliability cost. By applying EEL, it is possible for system planners to obtain a clear idea regarding the transmission network’s bottleneck and the amount of losses arises from this weak point. Sequentially, it enables planners to assess the worth of providing reliable services. Also, the EEL will contain valuable information for moneymen to undertake their investment. This index could truly reflect the random behaviors of power systems and uncertainties from electricity market. The performance of the EEL index is enhanced by applying Normalized Coefficient of Probability (NCP), so it can be utilized in large real power systems. A numerical example is carried out on IEEE Reliability Test System (RTS), which will show how the EEL can predict the current system bottleneck under future operational conditions and how to use EEL as one of planning objectives to determine future optimal plans. A well-known simulation method, Monte Carlo simulation, is employed to achieve the probabilistic characteristic of electricity market and Genetic Algorithms (GAs) is used as a multi-objective optimization tool.
Resumo:
University of Queensland Working Papers in Linguistics is an opportunity to share and showcase ongoing research by staff, students, and associates of UQ’s Linguistics program, housed in the School of English, Media Studies, and Art History. This, the first volume, covers a number of topics ranging from formal syntactic theory to second language acquisition, and is representative of the broad spectrum of research that is carried out at The University of Queensland. While the papers herein represent works in progress, they have all been reviewed by two peer assessors, and revised in accordance with the assessors’ reports.
Resumo:
The reconstruction of power industries has brought fundamental changes to both power system operation and planning. This paper presents a new planning method using multi-objective optimization (MOOP) technique, as well as human knowledge, to expand the transmission network in open access schemes. The method starts with a candidate pool of feasible expansion plans. Consequent selection of the best candidates is carried out through a MOOP approach, of which multiple objectives are tackled simultaneously, aiming at integrating the market operation and planning as one unified process in context of deregulated system. Human knowledge has been applied in both stages to ensure the selection with practical engineering and management concerns. The expansion plan from MOOP is assessed by reliability criteria before it is finalized. The proposed method has been tested with the IEEE 14-bus system and relevant analyses and discussions have been presented.
Resumo:
Brain electrical activity related to working memory was recorded at 15 scalp electrodes during a visuospatial delayed response task. Participants (N = 18) touched the remembered position of a target on a computer screen after either a 1 or 8 sec delay. These memory trials were compared to sensory trials in which the target remained present throughout the delay and response periods. Distracter stimuli identical to the target were briefly presented during the delay on 30% of trials. Responses were less accurate in memory than sensory trials, especially after the long delay. During the delay slow potentials developed that were significantly more negative in memory than sensory trials. The difference between memory and sensory trials was greater at anterior than posterior electrodes. On trials with distracters, the slow potentials generated by memory trials showed further enhancement of negativity whereas there were minimal effects on accuracy of performance. The results provide evidence that engagement of visuospatial working memory generates slow wave negativity with a timing and distribution consistent with frontal activation. Enhanced brain activity associated with working memory is required to maintain performance in the presence of distraction. © 1997 by the Massachusetts Institute of Technology
Resumo:
Baekground: Patients with schizophrenia tend to have impaired performance on tests of working memory (WM). Neurocognitive models have linked WM to certain symptoms of schizophrenia. This study aimed to assess WM in schizophrenia and mania in the acute and subacute phases of the illness and explore correlations between WM and symptom clusters. Methods: A visuo-spatial delayed response task was used to assess WM in schizophrenia (n=20), mania (n= 14) and well controls (n=20). Patients were tested during the first week of an acute admission, and subjects were retested after four weeks. WM, symptoms (PANSS, TLC) and executive ability (COWAT, Stroop, Trail Making) were assessed at both time points. Results: When assessed for overall WM errors (both sensory and memory), there was a significant group difference (F- 11.53, df 2, 40; p
Resumo:
This paper presents general considerations for working with athletes with disabilities and the usefulness and possible modification of specific mental skills for those athletes. Common concerns for athletes with specific disabilities are discussed. Specific disabilities are considered under the headings of amputees, blind and visually impaired, cerebral palsy, deaf and hearing impaired, intellectual disabilities, and wheelchair. Arousal control, goal setting, attention/concentration, body awareness, imagery, self-confidence, and precompetition preparation are discussed in terms of disability-specific issues as well as suggestions for application.
Abnormal neuronal circuitry for switching of attention and working memory in schizophrenic patients.
Resumo:
Previous work on generating state machines for the purpose of class testing has not been formally based. There has also been work on deriving state machines from formal specifications for testing non-object-oriented software. We build on this work by presenting a method for deriving a state machine for testing purposes from a formal specification of the class under test. We also show how the resulting state machine can be used as the basis for a test suite developed and executed using an existing framework for class testing. To derive the state machine, we identify the states and possible interactions of the operations of the class under test. The Test Template Framework is used to formally derive the states from the Object-Z specification of the class under test. The transitions of the finite state machine are calculated from the derived states and the class's operations. The formally derived finite state machine is transformed to a ClassBench testgraph, which is used as input to the ClassBench framework to test a C++ implementation of the class. The method is illustrated using a simple bounded queue example.