27 resultados para Hybrid system model

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The St. Lawrence Island polynya (SLIP) is a commonly occurring winter phenomenon in the Bering Sea, in which dense saline water produced during new ice formation is thought to flow northward through the Bering Strait to help maintain the Arctic Ocean halocline. Winter darkness and inclement weather conditions have made continuous in situ and remote observation of this polynya difficult. However, imagery acquired from the European Space Agency ERS-1 Synthetic Aperture Radar (SAR) has allowed observation of the St. Lawrence Island polynya using both the imagery and derived ice displacement products. With the development of ARCSyM, a high resolution regional model of the Arctic atmosphere/sea ice system, simulation of the SLIP in a climate model is now possible. Intercomparisons between remotely sensed products and simulations can lead to additional insight into the SLIP formation process. Low resolution SAR, SSM/I and AVHRR infrared imagery for the St. Lawrence Island region are compared with the results of a model simulation for the period of 24-27 February 1992. The imagery illustrates a polynya event (polynya opening). With the northerly winds strong and consistent over several days, the coupled model captures the SLIP event with moderate accuracy. However, the introduction of a stability dependent atmosphere-ice drag coefficient, which allows feedbacks between atmospheric stability, open water, and air-ice drag, produces a more accurate simulation of the SLIP in comparison to satellite imagery. Model experiments show that the polynya event is forced primarily by changes in atmospheric circulation followed by persistent favorable conditions: ocean surface currents are found to have a small but positive impact on the simulation which is enhanced when wind forcing is weak or variable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Agricultural Production Systems slMulator, APSIM, is a cropping system modelling environment that simulates the dynamics of soil-plant-management interactions within a single crop or a cropping system. Adaptation of previously developed crop models has resulted in multiple crop modules in APSIM, which have low scientific transparency and code efficiency. A generic crop model template (GCROP) has been developed to capture unifying physiological principles across crops (plant types) and to provide modular and efficient code for crop modelling. It comprises a standard crop interface to the APSIM engine, a generic crop model structure, a crop process library, and well-structured crop parameter files. The process library contains the major science underpinning the crop models and incorporates generic routines based on physiological principles for growth and development processes that are common across crops. It allows APSIM to simulate different crops using the same set of computer code. The generic model structure and parameter files provide an easy way to test, modify, exchange and compare modelling approaches at process level without necessitating changes in the code. The standard interface generalises the model inputs and outputs, and utilises a standard protocol to communicate with other APSIM modules through the APSIM engine. The crop template serves as a convenient means to test new insights and compare approaches to component modelling, while maintaining a focus on predictive capability. This paper describes and discusses the scientific basis, the design, implementation and future development of the crop template in APSIM. On this basis, we argue that the combination of good software engineering with sound crop science can enhance the rate of advance in crop modelling. Crown Copyright (C) 2002 Published by Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To foster ongoing international cooperation beyond ACES (APEC Cooperation for Earthquake Simulation) on the simulation of solid earth phenomena, agreement was reached to work towards establishment of a frontier international research institute for simulating the solid earth: iSERVO = International Solid Earth Research Virtual Observatory institute (http://www.iservo.edu.au). This paper outlines a key Australian contribution towards the iSERVO institute seed project, this is the construction of: (1) a typical intraplate fault system model using practical fault system data of South Australia (i.e., SA interacting fault model), which includes data management and editing, geometrical modeling and mesh generation; and (2) a finite-element based software tool, which is built on our long-term and ongoing effort to develop the R-minimum strategy based finite-element computational algorithm and software tool for modelling three-dimensional nonlinear frictional contact behavior between multiple deformable bodies with the arbitrarily-shaped contact element strategy. A numerical simulation of the SA fault system is carried out using this software tool to demonstrate its capability and our efforts towards seeding the iSERVO Institute.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes a hybrid numerical method of an inverse approach to the design of compact magnetic resonance imaging magnets. The problem is formulated as a field synthesis and the desired current density on the surface of a cylinder is first calculated by solving a Fredholm equation of the first, kind. Nonlinear optimization methods are then invoked to fit practical magnet coils to the desired current density. The field calculations are performed using a semi-analytical method. The emphasis of this work is on the optimal design of short MRI magnets. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric MRI magnets as well as asymmetric magnets. The results highlight that the method can be used to obtain a compact MRI magnet structure and a very homogeneous magnetic field over the central imaging volume in clinical systems of approximately 1 m in length, significantly shorter than current designs. Viable asymmetric magnet designs, in which the edge of the homogeneous region is very close to one end of the magnet system are also presented. Unshielded designs are the focus of this work. This method is flexible and may be applied to magnets of other geometries. (C) 2000 American Association of Physicists in Medicine. [S0094-2405(00)00303-5].

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Calibration of a groundwater model requires that hydraulic properties be estimated throughout a model domain. This generally constitutes an underdetermined inverse problem, for which a Solution can only be found when some kind of regularization device is included in the inversion process. Inclusion of regularization in the calibration process can be implicit, for example through the use of zones of constant parameter value, or explicit, for example through solution of a constrained minimization problem in which parameters are made to respect preferred values, or preferred relationships, to the degree necessary for a unique solution to be obtained. The cost of uniqueness is this: no matter which regularization methodology is employed, the inevitable consequence of its use is a loss of detail in the calibrated field. This, ill turn, can lead to erroneous predictions made by a model that is ostensibly well calibrated. Information made available as a by-product of the regularized inversion process allows the reasons for this loss of detail to be better understood. In particular, it is easily demonstrated that the estimated value for an hydraulic property at any point within a model domain is, in fact, a weighted average of the true hydraulic property over a much larger area. This averaging process causes loss of resolution in the estimated field. Where hydraulic conductivity is the hydraulic property being estimated, high averaging weights exist in areas that are strategically disposed with respect to measurement wells, while other areas may contribute very little to the estimated hydraulic conductivity at any point within the model domain, this possibly making the detection of hydraulic conductivity anomalies in these latter areas almost impossible. A study of the post-calibration parameter field covariance matrix allows further insights into the loss of system detail incurred through the calibration process to be gained. A comparison of pre- and post-calibration parameter covariance matrices shows that the latter often possess a much smaller spectral bandwidth than the former. It is also demonstrated that, as all inevitable consequence of the fact that a calibrated model cannot replicate every detail of the true system, model-to-measurement residuals can show a high degree of spatial correlation, a fact which must be taken into account when assessing these residuals either qualitatively, or quantitatively in the exploration of model predictive uncertainty. These principles are demonstrated using a synthetic case in which spatial parameter definition is based oil pilot points, and calibration is Implemented using both zones of piecewise constancy and constrained minimization regularization. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Bifurcation analysis is a very useful tool for power system stability assessment. In this paper, detailed investigation of power system bifurcation behaviour is presented. One and two parameter bifurcation analysis are conducted on a 3-bus power system. We also examined the impact of FACTS devices on power system stability through Hopf bifurcation analysis by taking static Var compensator (SVC) as an example. A simplified first-order model of the SVC device is included in the 3-bus sample system. Real and reactive powers are used as bifurcation parameter in the analysis to compare the system oscillatory properties with and without SVC. The simulation results indicate that the linearized system model with SVC enlarge the voltage stability boundary by moving Hopf bifurcation point to higher level of loading conditions. The installation of SVC increases the dynamic stability range of the system, however complicates the Hopf bifurcation behavior of the system

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A combination of deductive reasoning, clustering, and inductive learning is given as an example of a hybrid system for exploratory data analysis. Visualization is replaced by a dialogue with the data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a review of perceptual image quality metrics and their application to still image compression. The review describes how image quality metrics can be used to guide an image compression scheme and outlines the advantages, disadvantages and limitations of a number of quality metrics. We examine a broad range of metrics ranging from simple mathematical measures to those which incorporate full perceptual models. We highlight some variation in the models for luminance adaptation and the contrast sensitivity function and discuss what appears to be a lack of a general consensus regarding the models which best describe contrast masking and error summation. We identify how the various perceptual components have been incorporated in quality metrics, and identify a number of psychophysical testing techniques that can be used to validate the metrics. We conclude by illustrating some of the issues discussed throughout the paper with a simple demonstration. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Structurally related tetratricopeptide repeat motifs in steroid receptor-associated immunophilins and the STI1 homolog, Hop, mediate the interaction with a common cellular target, hsp90, We have identified the binding domain in hsp90 for cyclophilin 40 (CyP40) using a two-hybrid system screen of a mouse cDNA library. All isolated clones encoded the intact carboxyl terminus of hsp90 and overlapped with a common region corresponding to amino acids 558-724 of murine hsp84, The interaction was confirmed in vitro with bacterially expressed CyP40 and deletion mutants of hsp90 beta and was delineated further to a 124-residue COOH-terminal segment of hsp90, Deletion of the conserved MEEVD sequence at the extreme carboxyl terminus of hsp90 precludes interaction with CyP40, signifying an important role for this motif in hsp90 function. We show that CyP40 and Hop display similar interaction profiles with hsp90 truncation mutants and present evidence for the direct competition of Hop and FK506-binding protein 52 with CyP40 for binding to the hsp90 COOH-terminal region. Our results are consistent with a common tetratricopeptide repeat interaction site for Hop and steroid receptor associated immunophilins within a discrete COOH-terminal domain of hsp90. This region of hsp90 mediates ATP-independent chaperone activity, overlaps the hsp90 dimerization domain, and includes structural elements important for steroid receptor interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we describe a model of the human visual system (HVS) based on the wavelet transform. This model is largely based on a previously proposed model, but has a number of modifications that make it more amenable to potential integration into a wavelet based image compression scheme. These modifications include the use of a separable wavelet transform instead of the cortex transform, the application of a wavelet contrast sensitivity function (CSP), and a simplified definition of subband contrast that allows us to predict noise visibility directly from wavelet coefficients. Initially, we outline the luminance, frequency, and masking sensitivities of the HVS and discuss how these can be incorporated into the wavelet transform. We then outline a number of limitations of the wavelet transform as a model of the HVS, namely the lack of translational invariance and poor orientation sensitivity. In order to investigate the efficacy of this wavelet based model, a wavelet visible difference predictor (WVDP) is described. The WVDP is then used to predict visible differences between an original and compressed (or noisy) image. Results are presented to emphasize the limitations of commonly used measures of image quality and to demonstrate the performance of the WVDP, The paper concludes with suggestions on bow the WVDP can be used to determine a visually optimal quantization strategy for wavelet coefficients and produce a quantitative measure of image quality.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

There is increasing evidence that heterotrimeric G-proteins (G-proteins) are involved in many plant processes including phytohormone response, pathogen defence and stomatal control. In animal systems, each of the three G-protein subunits belong to large multigene families; however, few subunits have been isolated from plants. Here we report the cloning of a second plant G-protein γ-subunit (AGG2) from Arabidopsis thaliana. The predicted AGG2 protein sequence shows 48% identity to the first identified Arabidopsis Gγ-subunit, AGG1. Furthermore, AGG2 contains all of the conserved characteristics of γ-subunits including a small size (100 amino acids, 11.1 kDa), C-terminal CAAX box and a N-terminal α-helix region capable of forming a coiled-coil interaction with the β-subunit. A strong interaction between AGG2 and both the tobacco (TGB1) and Arabidopsis (AGB1) β-subunits was observed in vivo using the yeast two-hybrid system. The strong association between AGG2 and AGB1 was confirmed in vitro. Southern and Northern analyses showed that AGG2 is a single copy gene in Arabidopsis producing two transcripts that are present in all tissues tested. The isolation of a second γ-subunit from A. thaliana indicates that plant G-proteins, like their mammalian counterparts, may form different heterotrimer combinations that presumably regulate multiple signal transduction pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

GCR1 has been tentatively identified in Arabidopsis thaliana as the first plant G-protein coupled receptor (GPCR) (Josefsson and Rask 1997) implicated in the cytokinin sensory pathway (Plakidou-Dymock et al. 1998). A protein fusion of GCR1 and green fluorescent protein has been expressed in Arabidopsis and shown GCR1 to be located on the plasma membrane. Studies of plants with altered GCR1 expression have led us to question GCR1's involvement in cytokinin signaling. Transgenic Arabidopsis plants containing sense and antisense constructs for GCR1 have been produced and over- and under-expression confirmed. The analysis of 12 antisense and 17 sense lines has failed to reveal the previously reported Dainty phenotype or altered cytokinin sensitivity. We have used the Gauntlet approach to test the plants' response to various plant hormones although this has not yet identified a mutant phenotype. The yeast-two hybrid system has been used and so far there is no evidence to suggest GCR1 interacts with heterotrimeric G proteins. Before GCR1 can be identified as genuine G-protein coupled receptor, the identification of a ligand and a proof of association with heterotrimeric G-proteins should be obtained.