109 resultados para Human Visual System
em University of Queensland eSpace - Australia
Resumo:
In primates, the observation of meaningful, goaldirected actions engages a network of cortical areas located within the premotor and inferior parietal lobules. Current models suggest that activity within these regions arises relatively automatically during passive action observation without the need for topdown control. Here we used functional magnetic resonance imaging to determine whether cortical activit)' associated with action observation is modulated by the strategic allocation of selective attention. Normal observers viewed movie clips of reach-to-grasp actions while performing an easy or difficult visual discrimination at the fovea. A wholebrain analysis was performed to determine the effects of attentional load on neural responses to observed hand actions. Our results suggest that cortical areas involved in action observation are significantiy modulated by attentional load. These findings have important implications for recent attempts to link the human action-observation system to response properties of "mirror neurons" in monkeys.
Resumo:
Relative eye size, gross brain morphology and central localization of 2-[I-125]iodomelatonin binding sites and melatonin receptor gene expression were compared in six gadiform fish living at different depths in the north-east Atlantic Ocean: Phycis blennoides (capture depth range 265-1260 m), Nezumia aequalis (445-1512 m), Coryphaenoides rupestris (706-1932 m), Trachyrincus murrayi (1010-1884 m), Coryphaenoides guentheri (1030 m) and Coryphaenoides (Nematonurus) armatus (2172-4787 m). Amongst these, the eye size range was 0.15-0.35 of head length with a value of 0.19 for C.(N.) armatus, the deepest species. Brain morphology reflected behavioural differences with well-developed olfactory regions in P.blennoides, T.murrayi and C. (N.) armatus and evidence of olfactory deficit in N. aequalis, C. rupestris and C. guentheri. All species had a clearly defined optic tectum with 2-[I-125] iodomelatonin binding and melatonin receptor gene expression localized to specific brain regions in a similar pattern to that found in shallow-water fish. Melatonin receptors were found throughout the visual structures of the brains of all species. Despite living beyond the depth of penetration of solar light these fish have retained central features associated with the coupling of cycles of growth, behaviour and reproduction to the diel light-dark cycle. How this functions in the deep sea remains enigmatic.
Resumo:
In this paper, we describe a model of the human visual system (HVS) based on the wavelet transform. This model is largely based on a previously proposed model, but has a number of modifications that make it more amenable to potential integration into a wavelet based image compression scheme. These modifications include the use of a separable wavelet transform instead of the cortex transform, the application of a wavelet contrast sensitivity function (CSP), and a simplified definition of subband contrast that allows us to predict noise visibility directly from wavelet coefficients. Initially, we outline the luminance, frequency, and masking sensitivities of the HVS and discuss how these can be incorporated into the wavelet transform. We then outline a number of limitations of the wavelet transform as a model of the HVS, namely the lack of translational invariance and poor orientation sensitivity. In order to investigate the efficacy of this wavelet based model, a wavelet visible difference predictor (WVDP) is described. The WVDP is then used to predict visible differences between an original and compressed (or noisy) image. Results are presented to emphasize the limitations of commonly used measures of image quality and to demonstrate the performance of the WVDP, The paper concludes with suggestions on bow the WVDP can be used to determine a visually optimal quantization strategy for wavelet coefficients and produce a quantitative measure of image quality.
Resumo:
Female choice has rarely been documented in reptiles. In this study we examined the variation, condition-dependence and female preference for a range of male morphological and colour traits in the agamid lizard, Ctenophorus ornatus. Colour traits were measured with reflectance spectrophotometry which allows the accurate quantification of colour traits independent of the human visual system. All the colour traits varied greatly in brightness but only the throat showed high variation in the spectral shape. For the morphological traits, chest patch size showed the highest amount of variation and was also condition-dependent. Males with a larger chest patch also had a patch which was a darker black. Female mate choice trials were conducted on male chest patch size and body size, which is the trait females have preferred in other lizard species. Females showed no preference, measured as spatial association, for larger males or males with bigger chest patches. In post-hoc tests females did not prefer males with brighter throats or darker chests, Our findings suggest that females show no spatial discrimination between males on the basis of a range of traits most expected to influence female choice.
Resumo:
Body parts that can reflect highly polarized light have been found in several species of stomatopod crustaceans (mantis shrimps). These polarized light reflectors can be grossly divided into two major types. The first type, usually red or pink in color to the human visual system, is located within an animal’s cuticle. Reflectors of the second type, showing iridescent blue, are located beneath the exoskeleton and thus are unaffected by the molt cycle. We used reflection spectropolarimetry and transmission electron microscopy (TEM) to study the reflective properties and the structures that reflect highly polarized light in stomatopods. For the first type of reflector, the degree of polarization usually changes dramatically, from less than 20% to over 70%, with a change in viewing angle. TEM examination indicates that the polarization reflection is generated by multilayer thin-film interference. The second type of reflector, the blue colored ones, reflects highly polarized light to all viewing angles. However, these reflectors show a slight chromatic change with different viewing angles. TEM sections have revealed that streams of oval-shaped vesicles might be responsible for the production of the polarized light reflection. In all the reflectors we have examined so far, the reflected light is always maximally polarized at around 500 nm, which is close to the wavelength best transmitted by sea water. This suggests that the polarized light reflectors found in stomatopods are well adapted to the underwater environment. We also found that most reflectors produce polarized light with a horizontal e-vector. How these polarized light reflectors are used in stomatopod signaling remains unknown.
Resumo:
The human nervous system constructs a Euclidean representation of near (personal) space by combining multiple sources of information (cues). We investigated the cues used for the representation of personal space in a patient with visual form agnosia (DF). Our results indicated that DF relies predominantly on binocular vergence information when determining the distance of a target despite the presence of other (retinal) cues. Notably, DF was able to construct an Euclidean representation of personal space from vergence alone. This finding supports previous assertions that vergence provides the nervous system with veridical information for the construction of personal space. The results from the current study, together with those of others, suggest that: (i) the ventral stream is responsible for extracting depth and distance information from monocular retinal cues (i.e. from shading, texture, perspective) and (ii) the dorsal stream has access to binocular information (from horizontal image disparities and vergence). These results also indicate that DF was not able to use size information to gauge target distance, suggesting that intact temporal cortex is necessary for learned size to influence distance processing. Our findings further suggest that in neurologically intact humans, object information extracted in the ventral pathway is combined with the products of dorsal stream processing for guiding prehension. Finally, we studied the size-distance paradox in visual form agnosia in order to explore the cognitive use of size information. The results of this experiment were consistent with a previous suggestion that the paradox is a cognitive phenomenon.
Resumo:
Arriving in Brisbane some six years ago, I could not help being impressed by what may be prosaically described as its atmospheric amenity resources. Perhaps this in part was due to my recent experiences in major urban centres in North America, but since that time, that sparkling quality and the blue skies seem to have progressively diminished. Unfortunately, there is also objective evidence available to suggest that this apparent deterioration is not merely the result of habituation of the senses. Air pollution data for the city show trends of increasing concentrations of those very substances that have destroyed the attractiveness of major population centres elsewhere, with climates initially as salubrious. Indeed, present figures indicate that photochemical smog in unacceptably high concentrations is rapidly becoming endemic also over Brisbane. These regrettable developments should come as no surprise. The society at large has not been inclined to respond purposefully to warnings of impending environmental problems, despite the experiences and publicity from overseas and even from other cities within Australia. Nor, up to the present, have certain politicians and government officials displayed stances beyond those necessary for the maintenance of a decorum of concern. At this stage, there still exists the possibility for meaningful government action without the embarrassment of losing political favour with the electorate. To the contrary, there is every chance that such action may be turned to advantage with increased public enlightenment. It would be more than a pity to miss perhaps the final remaining opportunity: Queensland is one of the few remaining places in the world with sufficient resources to permit both rational development and high environmental quality. The choice appears to be one of making a relatively minor investment now for a large financial and social gain the near future, or, permitting Brisbane to degenerate gradually into just another stagnated Los Angeles or Sydney. The present monograph attempts to introduce the problem by reviewing the available research on air quality in the Brisbane area. It also tries to elucidate some seemingly obvious, but so far unapplied management approaches. By necessity, such a broad treatment needs to make inroads into extensive ranges of subject areas, including political and legal practices to public perceptions, scientific measurement and statistical analysis to dynamics of air flow. Clearly, it does not pretend to be definitive in any of these fields, but it does try to emphasize those adjustable facets of the human use system of natural resources, too often neglected in favour of air pollution control technology. The crossing of disciplinary boundaries, however, needs no apology: air quality problems are ubiquitous, touching upon space, time and human interaction.
Resumo:
Activation of the human complement system of plasma proteins in response to infection or injury produces a 4-helix bundle glycoprotein (74 amino acids) known as C5a. C5a binds to G-protein-coupled receptors on cell surfaces triggering receptor-ligand internalization, signal transduction, and powerful inflammatory responses. Since excessive levels of C5a are associated with autoimmune and chronic inflammatory disorders, inhibitors of receptor activation may have therapeutic potential. We now report solution structures and receptor-binding and antagonist activities for some of the first small molecule antagonists of C5a derived from its hexapeptide C terminus. The antagonist NMe-Phe-Lys-Pro-D-Cha-Trp-D-Arg-CO2H (1) surprisingly shows an unusually well-defined solution structure as determined by H-1 NMR spectroscopy. This is one of the smallest acyclic peptides found to possess a defined solution conformation, which can be explained by the constraining role of intramolecular hydrogen bonding. NOE and coupling constant data, slow deuterium exchange, and a low dependence on temperature for the chemical shift of the D-Cha-NH strongly indicate an inverse gamma turn stabilized by a D-Cha-NH ... OC-Lys hydrogen bond. Smaller conformational populations are associated with a hydrogen bond between Trp-NH ... OC-Lys, defining a type II beta turn distorted by the inverse gamma turn incorporated within it. An excellent correlation between receptor-affinity and antagonist activity is indicated for a limited set of synthetic peptides. Conversion of the C-terminal carboxylate of 1 to an amide decreases antagonist potency 5-fold, but potency is increased up to 10-fold over 1 if the amide bond is made between the C-terminal carboxylate and a Lys/Orn side chain to form a cyclic analogue. The solution structure of cycle 6 also shows gamma and beta turns; however, the latter occurs in a different position, and there are clear conformational changes in 6 vs 1 that result in enhanced activity. These results indicate that potent C5a antagonists can be developed by targeting site 2 alone of the C5a receptor and define a novel pharmacophore for developing powerful receptor probes or drug candidates.
Resumo:
Bright coloration and complex visual displays are frequent and well described in many lizard families. Reflectance spectrometry which extends into the ultraviolet (UV) allows measurement of such coloration independent of our visual system. We examined the role of colour in signalling and mate choice in the agamid lizard Ctenophorus ornatus. We found that throat reflectance strongly contrasted against the granite background of the lizards' habitat. The throat may act as a signal via the head-bobbing and push-up displays of C. ornatus. Dorsal coloration provided camouflage against the granite background, particularly in females. C. ornatus was sexually dichromatic for all traits examined including throat UV reflectance which is beyond human visual perception. Female throats were highly variable in spectral reflectance and males preferred females with higher throat chroma between 370 and 400 nm. However, female throat UV chroma is strongly correlated to both throat brightness and chest UV chroma and males may choose females on a combination of these colour variables. There was no evidence that female throat or chest coloration was an indicator of female quality. However, female brightness significantly predicted a female's laying date and, thus, may signal receptivity. One function of visual display in this species appears to be intersexual signalling, resulting in male choice of females.
Resumo:
Wrasses (Labridae) are the second largest family of fishes on the: Great Barrier Reef (after the Gobiidae) and, in terms of morphology and lifestyle, one of the most diverse. They occupy all zones of the reef from the very shadow reef flats to deep slopes, feeding on a variety of fauna. Many wrasses also have elaborately patterned bodies and reflect a range of colours from ultraviolet (UV) to far red. As a first step to investigating the visual system of these fishes we measured the transmission properties of the ocular media of 36 species from the Great Barrier Reef, Australia, and Hawaii, California and the Florida Keys, USA. Transmission measurements were made of whole eyes with a window cut into the back, and also of isolated lenses and corneas. Based on the transmission properties of the corneas the species could be split into two distinct groups within which the exact wavelength of the cut-off was variable. One group had visibly yellow corneas, while the corneas of the other group appeared clear to human observers. Five species had ocular media that transmitted wavelengths below 400 nm, making a perception of UV wavelengths for those species possible. Possible functional roles for the different filler types are discussed.
Resumo:
The colors of 51 species of Hawaiian reef fish have been measured using a spectrometer and therefore can be described in objective terms that are not influenced by the human visual experience. In common with other known reef fish populations, the colors of Hawaiian reef fish occupy spectral positions from 300-800nm; yellow or orange with blue, yellow with black, and black with white are the most frequently combined colors; and there is no link between possession of ultraviolet (UV) reflectance and UV visual sensitivity or the potential for UV visual sensitivity. In contrast to other reef systems, blue, yellow, and orange appear more frequently in Hawaiian reef fish. Based on spectral quality of reflections from fish skin, trends in fish colors can be seen that are indicative of both visually driven selective pressures and chemical or physical constraints on the design of colors. UV-reflecting colors can function as semiprivate communication signals. White or yellow with black form highly contrasting patterns that transmit well through clear water. Labroid fishes display uniquely complex colors but lack the ability to see the UV component that is common in their pigments. Step-shaped spectral curves are usually long-wavelength colors such as yellow or red, and colors with a peak-shaped spectral curves are green, blue, violet, and UV.
Resumo:
The apposition compound eyes of stomatopod crustaceans contain a morphologically distinct eye region specialized for color and polarization vision, called the mid-band. In two stomatopod superfamilies, the mid-band is constructed from six rows of enlarged ommatidia containing multiple photoreceptor classes for spectral and polarization vision. The aim of this study was to begin to analyze the underlying neuroarchitecture, the design of which might reveal clues how the visual system interprets and communicates to deeper levels of the brain the multiple channels of information supplied by the retina. Reduced silver methods were used to investigate the axon pathways from different retinal regions to the lamina ganglionaris and from there to the medulla externa, the medulla interna, and the medulla terminalis. A swollen band of neuropil-here termed the accessory lobe-projects across the equator of. the lamina ganglionaris, the medulla externa, and the medulla interna and represents, structurally, the retina's mid-band. Serial semithin and ultrathin resin sections were used to reconstruct the projection of photoreceptor axons from the retina to the lamina ganglionaris. The eight axons originating from one ommatidium project to the same lamina cartridge. Seven short visual fibers end at two distinct levels in each lamina cartridge, thus geometrically separating the two channels of polarization and spectral information. The eighth visual fiber runs axially through the cartridge and terminates in the medulla externa. We conclude that spatial, color, and polarization information is divided into three parallel data streams from the retina to the central nervous system. (C) 2003 Wiley-Liss, Inc.
Resumo:
The synthesis of the visible pigment melanin by the melanocyte cell is the basis of the human pigmentary system, those genes directing the formation, transport and distribution of the specialised melanosome organelle in which melanin accumulates can legitimately be called pigmentation genes. The genes involved in this process have been identified through comparative genomic studies of mouse coat colour mutations and by the molecular characterisation of human hypopigmentary genetic diseases such as OCA1 and OCA2. The melanocyte responds to the peptide hormones a-MSH or ACTH through the MC1R G-protein coupled receptor to stimulate melanin production through induced maturation or switching of melanin type. The pheomelanosome, containing the key enzyme of the pathway tyrosinase, produces light red/yellowish melanin, whereas the eumelanosome produces darker melanins via induction of additional TYRP1, TYRP2, SILV enzymes, and the P-protein. Intramelanosomal pH governed by the P-protein may act as a critical determinant of tyrosinase enzyme activity to control the initial step in melanin synthesis or TYRP complex formation to facilitate melanogenesis and melanosomal maturation. The search for genetic variation in these candidate human pigmentation genes in various human populations has revealed high levels of polymorphism in the MC1R locus, with over 30 variant alleles so far identified. Functional correlation of MC1R alleles with skin and hair colour provides evidence that this receptor molecule is a principle component underlying normal human pigment variation. (C) 2001 Elsevier Science B.V. All rights reserved.