41 resultados para Howes. Lorne
em University of Queensland eSpace - Australia
Resumo:
The focus of this paper is on the effect of gravity stretching on disturbed capillary jet instability. Break-up and droplet formation under low flows are simulated using finite difference solution of a one-dimensional approximation of disturbed capillary jet instability chosen from the work by Eggers and Dupont (J. Fluid Mech. 155 (1994) 289). Experiments were conducted using water and aqueous glycerol solutions to compare with simulations. We use a gravity parameter, G, which quantifies gravity stretching by relating flow velocity, orifice size and acceleration and is the reciprocal of the Fronde number. The optimum disturbance frequency Omega(opt) was found to be inversely proportional to G. However, this relationship appears to be complex for the range of G's investigated. At low G, the relationship between Omega(opt) and G appears to be linear but takes on a weakly decaying like trend as G increases. As flows are lowered, the satellite-free regime decreases, although experimental observation found that merging of main and satellite drops sometimes offset this effect to result in monodispersed droplet trains post break-up. Viscosity did not significantly affect the relationship between the disturbance frequency and G, although satellite drops could be seen more clearly close to the upper limit for instability at high G's. It is possible to define regimes of satellite formation under low flows by considering local wavenumbers at the point of instability. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The importance of sticky behaviour of amorphous food powders has been recognized over many decades in the food industry due to its influence on process and handling abilities and quality of the powders. This paper emphasizes the role of stickiness in the food powder industry as well as reviews the stickiness characterization techniques developed to date. This paper also attempts to correlate the stickiness behaviour of food powders to the instrumental analysis such as glass transition temperature. (C) 2004 Elsevier B.V All rights reserved.
Resumo:
The effect of addition of maltodextrin on drying kinetics of drops containing fructose, glucose, sucrose and citric acid individually and in mixtures was studied experimentally using single drop drying experiments and numerically by solving appropriate mass and heat transfer equations. The numerical predictions agreed with the experimental moisture and temperature histories within 5-6% average relative (absolute) errors and average differences of +/- 1degreesC, respectively. The stickiness of these drops was determined using the glass transition temperature (T-g) of the drops' surface layer as an indicator. The experimental stickiness histories followed the model predictions with reasonable accuracy. A safe drying (non-sticky) regime in a spray drying environment has been proposed, and used to estimate the optimum amount of addition of maltodextrin for successful spray drying of 120 micron diameter droplets of fruit juices. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The glass transition temperature and the second transition (the endothermic change between the glass transition and melting temperatures) of fructose were studied. The thermal history strongly affected both transitions of fructose. Storage for 10 days at 22degreesC increased the dynamic glass transition temperature from 16 to 25degreesC and decreased the second transition of fructose from 110 to 98degreesC in the first differential scanning calorimetric (DSC) scan. The amplitude of the second transition increased slightly with storage time and reached 260% of the first transition for vacuum oven dried samples. The effect of thermal history on the glass transition temperature of fructose can be removed by scanning the sample in a DSC to 130degreesC. The effects of water content, glucose and sucrose on the two transitions were also investigated.
Resumo:
In liquid-liquid dispersion systems, the dynamic change of the interfacial properties between the two immiscible liquids plays an important role in both the emulsification process and emulsion stabilization. In this paper, experimentally measured dynamic interfacial tensions of 1-chlorobutane in the aqueous solutions of various random copolymers of polyvinyl acetate and polyvinyl alcohol (PVAA) are presented. Theoretical analyses on these results suggest that the adsorption of the polymer molecules is controlled neither by the bulk diffusion process nor the activation energy barrier for the adsorption but the conformation of polymer molecules. Based on the concept of critical concentration of condensation for polymer adsorption, as well as the observation that the rate at which the dynamic interfacial tension changes does not correlate to the PVAA's ability to stabilize a single drop, it is postulated that the main stabilization mechanism for the PVAAs is by steric hindrance, not the Gibbs-Marangoni effect offered by the small molecule surfactants.
Resumo:
Stickiness behavior of skim milk powder was investigated based on the mechanical property of the material during the glass-rubber transition. A thermally controlled device was developed for the static mechanical test. This device was attached to a texture analyzer, and skim milk powder, which was used as a model sample, was tested for its glass-rubber transition temperature (Tg-r) using static compression technique (creep test). Changes in compression probe distance as a function of temperature were recorded. Tg-r was determined, in the region where changes in the probe distance were observed, by using linear regression technique. The effect of sample quantity, compression force, and heating rate on the determination of Tg-r was investigated. All these parameters significantly influenced the Tg-r determination (p < 0.05). The Tg-r of skim milk powder measured by this novel technique was found closely correlated to its glass transition temperature (T-g) measured by DSC.
Resumo:
The "war on terror" has been associated with an extraordinary proliferation of Afghan autoethnographies in the Western marketplace. In this article, various implications and connotations of this are read to explore the ethical engagements of life narrative in these times.
Resumo:
A steady state mathematical model for co-current spray drying was developed for sugar-rich foods with the application of the glass transition temperature concept. Maltodextrin-sucrose solution was used as a sugar-rich food model. The model included mass, heat and momentum balances for a single droplet drying as well as temperature and humidity profile of the drying medium. A log-normal volume distribution of the droplets was generated at the exit of the rotary atomizer. This generation created a certain number of bins to form a system of non-linear first-order differential equations as a function of the axial distance of the drying chamber. The model was used to calculate the changes of droplet diameter, density, temperature, moisture content and velocity in association with the change of air properties along the axial distance. The difference between the outlet air temperature and the glass transition temperature of the final products (AT) was considered as an indicator of stickiness of the particles in spray drying process. The calculated and experimental AT values were close, indicating successful validation of the model. (c) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Stickiness is a common problem encountered in food handling and processing, and also during consumption. Stickiness is observed as adhesion of the food to processing equipment surfaces or cohesion within the food particulate or mass. An important operation where this undesirable behavior of food is manifested is drying. This occurs particularly during drying of high-sugar and high-fat foods. To date, the stickiness of foods during drying or dried powder has been investigated in relation to their viscous and glass transition properties. The importance of contact surface energy of the equipment has been ignored in many analyses, despite the fact that some drying operations have reported using low-energy contact surfaces in drying equipment to avoid the problems caused by stickiness. This review discusses the fundamentals of adhesion and cohesion mechanisms and relates these phenomena to drying and dried products.
Resumo:
Experiments for the investigation of the flow of granular solids in a pyrolysis pilot-scale rotary kiln are presented. These experiments consisted first in measuring the volumetric filling ratio (steady-state experiences) for several operating conditions and second in recording the exit flow rates after a positive or negative step in one of the operating parameters (dynamic experiences). A dynamical model computing the evolution of the flow rate of granular solids through the kiln has been developed based on Saeman model [Chem. Eng. Prog. 47 (1951) 508]. The simulations are compared with experimental results; the model gives good results for the rolling mode, but for the slipping mode too. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The initial disturbance amplitude has an effect on stretching jets that is not observed for capillary jet instability where gravitational acceleration is not significant. For inviscid and viscous fluids, gravity diminishes the effect that the initial amplitude has on jet length and its ability to prevent satellite formation. In stretching jets, not only the dimensionless frequency of the disturbance but also its initial amplitude must be known to properly study their satellite forming nature. Indirect methods of relating the applied disturbance energy to an initial velocity perturbation are not simple when the gravity parameter G is changing. When G A 0, the optimum disturbance frequency Omega(opt) and the initial disturbance amplitude are related, with Omega(opt) proportional to f (G) x In(1 /epsilon(nu)). Results from numerical simulations and experiments are presented here. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The development of surface stickiness of droplets of sugar and acid-rich foods during spray drying can be explained using the notion of glass transition temperature (T-g). In this work, criteria for a safe drying regime have been developed and their physical basis provided. A dimensionless time (psi) is introduced as an indicator of spray dryability and it is correlated with the recovery of powders in practical spray drying. Droplets with initial diameters of 120 mum were subjected to simulated spray drying conditions and their safe drying regime and 41 values generated. The model predicted the recovery in a pilot scale spray dryer reasonably well. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
A computer model was developed to simulate the cake formation and growth in cake filtration at an individual particle level. The model was shown to be able to generate structural information and quantify the cake thickness, average cake solidosity, filtrate volume, filtrate flowrate for constant pressure filtration or pressure drop across the filter unit for constant rate filtration as a function of filtration time. The effects of particle size distribution and key operational variables such as initial filtration flowrate, maximum pressure drop and initial solidosity were examined based on the simulated results. They are qualitatively comparable to those observed in physical experiments. The need for further development in simulation was also discussed. (c) 2006 Elsevier Ltd. All rights reserved.