9 resultados para Host structure

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reef-building corals contain host pigments, termed pocilloporins, that function to regulate the light environment of their resident microalgae by acting as a photoprotectant in excessive sunlight. We have determined the crystal structure of an intensely blue, non-fluorescent pocilloporin to 2.2 Angstrom resolution and a genetically engineered fluorescent variant to 2.4 Angstrom resolution. The pocilloporin chromophore structure adopts a markedly different conformation in comparison with the DsRed chromophore, despite the chromophore sequences (Gin-Tyr-Gly) being identical; the tyrosine ring of the pocilloporin chromophore is noncoplanar and in the trans configuration. Furthermore, the fluorescent variant adopted a noncoplanar chromophore conformation. The data presented here demonstrates that the conformation of the chromophore is highly dependent on its immediate environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chloroplast genes of dinoflagellates are distributed among small, circular dsDNA molecules termed minicircles. In this paper, we describe the structure of the non-coding region of the psbA minicircle from Symbiodinium. DNA sequence was obtained from five Symbiodinium strains obtained from four different coral host species (Goniopora tenuidens, Heliofungia actiniformis, Leptastrea purpurea and Pocillopora damicornis), which had previously been determined to be closely related using LSU rDNA region D1/D2 sequence analysis. Eight distinct sequence blocks, consisting of four conserved cores interspersed with two metastable regions and flanked by two variable regions, occurred at similar positions in all strains. Inverted repeats (IRs) occurred in tandem or 'twin' formation within two of the four cores. The metastable regions also consisted of twin IRs and had modular behaviour, being either fully present or completely absent in the different strains. These twin IRs are similar in sequence to double-hairpin elements (DHEs) found in the mitochondrial genomes of some fungi, and may be mobile elements or may serve a functional role in recombination or replication. Within the central unit (consisting of the cores plus the metastable regions), all IRs contained perfect sequence inverses, implying they are highly evolved. IRs were also present outside the central unit but these were imperfect and possessed by individual strains only. A central adenine-rich sequence most closely resembled one in the centre of the non-coding part of Amphidinium operculatum minicircles, and is a potential origin of replication. Sequence polymorphism was extremely high in the variable regions, suggesting that these regions may be useful for distinguishing strains that cannot be differentiated using molecular markers currently available for Symbiodinium.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Schistosomes are parasitic blood flukes, responsible for significant human disease in tropical and developing nations. Here we review information on the organization of the cytoskeleton and associated motor proteins of schistosomes, with particular reference to the organization of the syncytial tegument, a unique cellular adaptation of these and other neodermatan flatworms. Extensive EST databases show that the molecular constituents of the cytoskeleton and associated molecular systems are likely to be similar to those of other eukaryotes, although there are potentially some molecules unique to schistosomes and platyhelminths. The biology of some components, particular those contributing to host-parasite interactions as well as chemotherapy and immunotherapy are discussed. Unresolved questions in relation to the structure and function of the tegument relate to dynamic organization of the syncytial layer. (C) 2004 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cyclotides are a family of small disulfide rich proteins that have a cyclic peptide backbone and a cystine knot formed by three conserved disulfide bonds. The combination of these two structural motifs contributes to the exceptional chemical, thermal and enzymatic stability of the cyclotides, which retain bioactivity after boiling. They were initially discovered based on native medicine or screening studies associated with some of their various activities, which include uterotonic action, anti-HIV activity, neurotensin antagonism, and cytotoxicity. They are present in plants from the Rubiaceae, Violaceae and Cucurbitaccae families and their natural function in plants appears to be in host defense: they have potent activity against certain insect pests and they also have antimicrobial activity. There are currently around 50 published sequences of cyclotides and their rate of discovery has been increasing over recent years. Ultimately the family may comprise thousands of members. This article describes the background to the discovery of the cyclotides, their structural characterization, chemical synthesis, genetic origin, biological activities and potential applications in the pharmaceutical and agricultural industries. Their unique topological features make them interesting from a protein folding perspective. Because of their highly stable peptide framework they might make useful templates in drug design programs, and their insecticidal activity opens the possibility of applications in crop protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This Study describes the community of all metazoan parasites from 14 individuals of thicklip wrasse, Hemigymnus melapterus, from Lizard Island, Australia. All fish were parasitized, and 4,649 parasite individuals were found. Twenty-six parasite species were identified although only 6 species were abundant and prevalent: gnathiid isopods, the copepod Hatschekia hemigymni, the digenean Callohelmis pichelinae, and 3 morphotypes of tetraphyllidean cestode larvae. We analyzed whether the body size and microhabitat of the parasites and size of the host affected understanding of the structure of the parasite community. We related the abundance, biovolume, and density of parasites with the host body size and analyzed the abundances and volumetric densities of some parasite species within microhabitats. Although the 2 most abundant species comprised 75% of all parasite individuals, 4 species, each in similar proportion, comprised 85% of the total biovolume. Although larger host individuals had higher richness, abundance, and biovolume of parasites than smaller individuals, overall parasite volumetric density actually decreased with the host body size. Moreover. parasites exhibited abundances and densities significantly different among microhabitats; some parasite species depended on the area available, whereas others selected a specific microhabitat. Parasite and habitat size exhibited interesting relationships that should be considered more frequently. Considerations of these parameters improve understanding of parasite community structure and how the parasites use their habitats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature dependence of the X-ray crystal structure and powder EPR spectrum of [(HC(Ph2PO)(3))(2)CU]-(ClO4)(2)center dot 2H(2)O is reported, and the structure at room temperature confirms that reported previously. Below similar to 100 K, the data imply a geometry with near elongated tetragonal symmetry for the [(HC(Ph2PO)(3))(2)Cu](2+) complex, but on warming the two higher Cu-O bond lengths and g-values progressively converge, and by 340 K the bond lengths correspond to a compressed tetragonal geometry. The data may be interpreted satisfactorily assuming an equilibrium among the energy levels of a Cu-O-6 polyhedron subjected to Jahn-Teller vibronic coupling and a lattice strain. However, agreement with the experiment is obtained only if the orthorhombic component of the lattice strain decreases to a negligible value as the temperature approaches 340 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature dependence of the structure of the mixed-anion Tutton salt K-2[Cu(H2O)(6)](SO4)(2x)(SeO4)(2-2x) has been determined for crystals with 0, 17, 25, 68, 78, and 100% sulfate over the temperature range of 85-320 K. In every case, the [Cu(H2O)(6)](2+) ion adopts a tetragonally elongated coordination geometry with an orthorhombic distortion. However, for the compounds with 0, 17, and 25% sulfate, the long and intermediate bonds occur on a different pair of water molecules from those with 68, 78, and 100% sulfate. A thermal equilibrium between the two forms is observed for each crystal, with this developing more readily as the proportions of the two counterions become more similar. Attempts to prepare a crystal with approximately equal amounts of sulfate and selenate were unsuccessful. The temperature dependence of the bond lengths has been analyzed using a model in which the Jahn-Teller potential surface of the [Cu(H2O)(6)](2+) ion is perturbed by a lattice-strain interaction. The magnitude and sign of the orthorhombic component of this strain interaction depends on the proportion of sulfate to selenate. Significant deviations from Boltzmann statistics are observed for those crystals exhibiting a large temperature dependence of the average bond lengths, and this may be explained by cooperative interactions between neighboring complexes.