16 resultados para Hospital Logistics, Complex Systems, Waste Management, Nutritional Support, Nutrition Screening, Nutritional Risk, Outsourcing
em University of Queensland eSpace - Australia
Resumo:
Notwithstanding the increasingly fragmented organizational relationships within Colombo's urban governance system, the cooperative nature of stakeholder relationships lends a high level of coherence to the overall system. Since 1995, Colombo's solid waste management system has been characterized by the increased role of the private sector, community-based organizations and NGOs. Whilst the increasingly fragmented nature of this system exhibits some deeply ingrained problems, there are also a number of positives associated with the increased role of civil society actors and, in particular, the informal sector. Reforming regulatory frameworks so as to integrate some of the social norms that are integral to the lives of the majority of urban residents will contribute to regulatory frameworks being considerably more enforceable than is currently the case. Such reform requires that institutional and regulatory frameworks need to be flexible enough to adapt to the changing social, political and economic context. In the Colombo case, effective cooperation between public sector and civil society stakeholders illustrates that adaptive institutional arrangements grounded in pragmatism are feasible. The challenge that arises is to translate these institutional arrangements into adaptive regulatory frameworks - something that would require a significant mind shift on the part of planners and urban managers.
Resumo:
We demonstrate that the process of generating smooth transitions Call be viewed as a natural result of the filtering operations implied in the generation of discrete-time series observations from the sampling of data from an underlying continuous time process that has undergone a process of structural change. In order to focus discussion, we utilize the problem of estimating the location of abrupt shifts in some simple time series models. This approach will permit its to address salient issues relating to distortions induced by the inherent aggregation associated with discrete-time sampling of continuous time processes experiencing structural change, We also address the issue of how time irreversible structures may be generated within the smooth transition processes. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
A theory of value sits at the core of every school of economic thought and directs the allocation of resources to competing uses. Ecological resources complicate the modem neoclassical approach to determining value due to their complex nature, considerable non-market values and the difficulty in assigning property rights. Application of the market model through economic valuation only provides analytical solutions based on virtual markets, and neither the demand nor supply-side techniques of valuation can adequately consider the complex set of biophysical and ecological relations that lead to the provision of ecosystem goods and services. This paper sets out a conceptual framework for a complex systems approach to the value of ecological resources. This approach is based on there being both an intrinsic quality of ecological resources and a subjective evaluation by the consumer. Both elements are necessary for economic value. This conceptual framework points the way towards a theory of value that incorporates both elements, so has implications for principles by which ecological resources can be allocated. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The article argues that economics will have to become a complex systems science before economists can comfortably incorporate institutionalist and evolutionary economics into mainstream theory. The article compares the complex adaptive system of John Foster with that of standard economic theory and illustrates the difference through an examination of familiar production function. The place of neoclassical, Keynesian economics in complex systems is considered. The article concludes that convincing, multiple models have been made possible by the increase in widely available computing power available.
Resumo:
It is a paradox that in a country with one of the most variable climates in the world, cropping decisions are sometimes made with limited consideration of production and resource management risks. There are significant opportunities for improved performance based on targeted information regarding risks resulting from decision options. WhopperCropper is a tool to help agricultural advisors and farmers capture these benefits and use it to add value to their intuition and experience. WhopperCropper allows probability analysis of the effects of a range of selectable crop inputs and existing resources on yield and economic outcomes. Inputs can include agronomic inputs (e.g crop type, N fertiliser rate), resources (e.g soil water at sowing), and seasonal climate forecast (SOI phase). WhopperCropper has been successfully developed and refined as a discussion-support process for decision makers and their advisers in the northern grains region of Australia. The next phase of the project will build on the current project by extending its application nationally and enhancing the resource management aspects. A commercial partner, with over 800 advisor clients nationally, will participate in the project.
Resumo:
The design, development, and use of complex systems models raises a unique class of challenges and potential pitfalls, many of which are commonly recurring problems. Over time, researchers gain experience in this form of modeling, choosing algorithms, techniques, and frameworks that improve the quality, confidence level, and speed of development of their models. This increasing collective experience of complex systems modellers is a resource that should be captured. Fields such as software engineering and architecture have benefited from the development of generic solutions to recurring problems, called patterns. Using pattern development techniques from these fields, insights from communities such as learning and information processing, data mining, bioinformatics, and agent-based modeling can be identified and captured. Collections of such 'pattern languages' would allow knowledge gained through experience to be readily accessible to less-experienced practitioners and to other domains. This paper proposes a methodology for capturing the wisdom of computational modelers by introducing example visualization patterns, and a pattern classification system for analyzing the relationship between micro and macro behaviour in complex systems models. We anticipate that a new field of complex systems patterns will provide an invaluable resource for both practicing and future generations of modelers.
Resumo:
A framework for developing marketing category management decision support systems (DSS) based upon the Bayesian Vector Autoregressive (BVAR) model is extended. Since the BVAR model is vulnerable to permanent and temporary shifts in purchasing patterns over time, a form that can correct for the shifts and still provide the other advantages of the BVAR is a Bayesian Vector Error-Correction Model (BVECM). We present the mechanics of extending the DSS to move from a BVAR model to the BVECM model for the category management problem. Several additional iterative steps are required in the DSS to allow the decision maker to arrive at the best forecast possible. The revised marketing DSS framework and model fitting procedures are described. Validation is conducted on a sample problem.