42 resultados para Homology directed repair
em University of Queensland eSpace - Australia
Resumo:
This project identified a novel family of six 66-68 residue peptides from the venom of two Australian funnel-web spiders, Hadronyche sp. 20 and H. infensa: Orchid Beach (Hexathelidae: Atracinae), that appear to undergo N- and/or C-terminal post-translational modifications and conform to an ancestral protein fold. These peptides all show significant amino acid sequence homology to atracotoxin-Hvf17 (ACTX-Hvf17), a non-toxic peptide isolated from the venom of H. versuta, and a variety of AVIT family proteins including mamba intestinal toxin 1 (MIT1) and its mammalian and piscine orthologs prokineticin 1 (PK1) and prokineticin 2 PK2). These AVIT family proteins target prokineticin receptors involved in the sensitization of nociceptors and gastrointestinal smooth muscle activation. Given their sequence homology to MITI, we have named these spider venom peptides the MIT-like atracotoxin (ACTX) family. Using isolated rat stomach fundus or guinea-pia ileum organ bath preparations we have shown that the prototypical ACTX-Hvf17, at concentrations up to 1 mu M, did not stimulate smooth muscle contractility, nor did it inhibit contractions induced by human PK1 (hPK1). The peptide also lacked activity on other isolated smooth muscle preparations including rat aorta. Furthermore, a FLIPR Ca2+ flux assay using HEK293 cells expressing prokineticin receptors showed that ACTX-Hvf17 fails to activate or block hPK1 or hPK2 receptors. Therefore, while the MIT-like ACTX family appears to adopt the ancestral disulfide-directed beta-hairpin protein fold of MIT1, a motif believed to be shared by other AVIT family peptides, variations in the amino acid sequence and surface charge result in a loss of activity on prokineticin receptors. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The flavivirus West Nile virus (WNV) has spread rapidly throughout the world in recent years causing fever, meningitis, encephalitis, and fatalities. Because the viral protease NS2B/NS3 is essential for replication, it is attracting attention as a potential therapeutic target, although there are currently no antiviral inhibitors for any flavivirus. This paper focuses on elucidating interactions between a hexapeptide substrate (Ae-KPGLKR-p-nitroanilide) and residues at S1 and S2 in the active site of WNV protease by comparing the catalytic activities of selected mutant recombinant proteases in vitro. Homology modeling enabled the predictions of key mutations in VWNV NS3 protease at S1 (V115A/F, D129A/ E/N, S135A, Y150A/F, S160A, and S163A) and S2 (N152A) that might influence substrate recognition and catalytic efficiency. Key conclusions are that the substrate P1 Arg strongly interacts with S1 residues Asp-129, Tyr-150, and Ser-163 and, to a lesser extent, Ser-160, and P2 Lys makes an essential interaction with Asn-152 at S2. The inferred substrate-enzyme interactions provide a basis for rational protease inhibitor design and optimization. High sequence conservation within flavivirus proteases means that this study may also be relevant to design of protease inhibitors for other flavivirus proteases.
Resumo:
DNA mismatch repair is an important mechanism involved in maintaining the fidelity of genomic DNA. Defective DNA mismatch repair is implicated in a variety of gastrointestinal and other turners; however, its role in hepatocellular carcinoma (HCC) has not been assessed. Formalin-fixed, paraffin-embedded archival pathology tissues from 46 primary liver tumors were studied by microdissection and microsatellite analysis of extracted DNA to assess the degree of microsatellite instability, a marker of defective mismatch repair, and to determine the extent and timing of allelic loss of two DNA mismatch repair genes, human Mut S homologue-2 (hMSH2) and human Mut L homologue-1 (hMLH1), and the tumor suppressor genes adenomatous polyposis coli gene (APC), p53, and DPC4. Microsatellite instability was detected in 16 of the tumors (34.8%). Loss of heterozygosity at microsatellites linked to the DNA mismatch repair genes, hMSH2 and/or hMLH1, was found in 9 cases (19.6%), usually in association with microsatellite instability. Importantly, the pattern of allelic loss was uniform in 8 of these 9 tumors, suggesting that clonal loss had occurred. Moreover, loss at these loci also occurred in nonmalignant tissue adjacent to 4 of these tumors, where it was associated with marked allelic heterogeneity. There was relatively infrequent loss of APC, p53, or DPC4 loci that appeared unrelated to loss of hMSH2 or hMLH1 gene loci. Loss of heterozygosity at hMSH2 and/or hMLH1 gene loci, and the associated microsatellite instability in premalignant hepatic tissues suggests a possible causal role in hepatic carcinogenesis in a subset of hepatomas.
Resumo:
A trinuclear macrocyclic complex is reported from the metal directed condensation between melamine, formaldehyde and the Cu-II complex of a linear tetraamine.
Resumo:
DNA replication fork arrest during the termination phase of chromosome replication in Bacillus subtilis is brought about by the replication terminator protein (RTP) bound to specific DNA terminator sequences (Tev sites) distributed throughout the terminus region. An attractive suggestion by others was that crucial to the functioning of the RTP-Ter complex is a specific interaction between RTP positioned on the DNA and the helicase associated with the approaching replication fork. Ln support of this was the behaviour of two site-directed mutants of RTP. They appeared to bind Ter DNA normally but were ineffective in fork arrest as ascertained by in vitro Escherichia coli DnaB helicase and replication assays. We describe here a system for assessing the fork-arrest behaviour of RTP mutants in a bona fide in vivo assay in B. subtilis. One of the previously studied mutants, RTP.Y33N, was non-functional in fork arrest in vivo, as predicted. But through extensive analyses, this RTP mutant was shown to be severely defective in binding to Ter DNA, contrary to expectation. Taken in conjunction with recent findings on the other mutant (RTP.E30K), it is concluded that there is as yet no substantive evidence from the behaviour of RTP mutants to support the Rm-helicase interaction model for fork arrest. In an extension of the present work on RTP.Y33N, we determined the dissociation rates of complexes formed by wild-type (wt) RTP and another RTP mutant with various terminator sequences. The functional wtRTP-TerI complex was quite stable (half-life of 182 minutes), reminiscent of the great stability of the E. coli Tus-Ter complex. More significant were the exceptional stabilities of complexes comprising wtRTP and an RTP double-mutant (E39K.R42Q) bound to some particular terminator sequences. From the measurement of in vivo fork-arrest activities of the various complexes, it is concluded that the stability (half-life) of the whole RTP-Ter complex is not the overriding determinant of arrest, and that the RTP-Ter complex must be actively disrupted, or RTP removed, by the action of the approaching replication fork. (C) 1999 Academic Press.
Resumo:
Sulfonation is an important metabolic process involved in the excretion and in some cases activation of various endogenous compounds and xenobiotics. This reaction is catalyzed by a family of enzymes named sulfotransferases. The cytosolic human sulfotransferases SULT1A1 and SULT1A3 have overlapping yet distinct substrate specificities. SULT1A1 favors simple phenolic substrates such as p-nitrophenol, whereas SULT1A3 prefers monoamine substrates such as dopamine. In this study we have used a variety of phenolic substrates to functionally characterize the role of the amino acid at position 146 in SULT1A1 and SULT1A3. First, the mutation A146E in SULT1A1 yielded a SULT1A3-like protein with respect to the Michaelis constant for simple phenols. The mutation E146A in SULT1A3 resulted in a SULT1A1-like protein with respect to the Michaelis constant for both simple phenols and monoamine compounds. When comparing the specificity of SULT1A3 toward tyramine with that for p-ethylphenol (which differs from tyramine in having no amine group on the carbon side chain), we saw a 200-fold preference for tyramine. The kinetic data obtained with the E146A mutant of SULT1A3 for these two substrates clearly showed that this protein preferred substrates without an amine group attached. Second, changing the glutamic acid at position 146 of SULT1A3 to a glutamine, thereby neutralizing the negative charge at this position, resulted in a 360-fold decrease in the specificity constant for dopamine. The results provide strong evidence that residue 146 is crucial in determining the substrate specificity of both SULT1A1 and SULT1A3 and suggest that there is a direct interaction between glutamic acid 146 in SULT1A3 and monoamine substrates.
Resumo:
Regulation of protein function is vital for the control of cellular processes. Proteins are often regulated by allosteric mechanisms, in which effecters bind to regulatory sites distinct from the active sites and alter protein function. Intrasteric regulation, directed at the active site and thus the counterpart of allosteric control, is now emerging as an important regulatory mechanism.
Resumo:
We have isolated a family of insect-selective neurotoxins from the venom of the Australian funnel-web spider that appear to be good candidates for biopesticide engineering. These peptides, which we have named the Janus-faced atracotoxins (J-ACTXs), each contain 36 or 37 residues, with four disulfide bridges, and they show no homology to any sequences in the protein/DNA databases. The three-dimensional structure of one of these toxins reveals an extremely rare vicinal disulfide bridge that we demonstrate to be critical for insecticidal activity. We propose that J-ACTX comprises an ancestral protein fold that we refer to as the disulfide-directed beta-hairpin.
Resumo:
A novel conotoxin belonging to the 'four-loop' structural class has been isolated from the venom of the piscivorous cone snail Conus tulipa. It was identified using a chemical-directed strategy based largely on mass spectrometric techniques. The new toxin, conotoxin TVIIA, consists of 30 amino-acid residues and contains three disulfide bonds. The amino-acid sequence was determined by Edman analysis as SCSGRDSRCOOVCCMGLMCSRGKCVSIYGE where O = 4-transl-hydroxyproline. Two under-hydroxylated analogues, [Pro10]TVIIA and [Pro10,11]TVIIA, were also identified in the venom of C. tulipa. The sequences of TVIIA and [Pro10]TVIIA were further verified by chemical synthesis and coelution studies with native material. Conotoxin TVIIA has a six cysteine/four-loop structural framework common to many peptides from Conus venoms including the omega-, delta- and kappa-conotoxins. However, TVIIA displays little sequence homology with these well-characterized pharmacological classes of peptides, but displays striking sequence homology with conotoxin GS, a peptide from Conus geographus that blocks skeletal muscle sodium channels. These new toxins and GS share several biochemical features and represent a distinct subgroup of the four-loop conotoxins.
Resumo:
The reaction of the bis(propane-1,3-diamine)copper(II) ion with paraformaldehyde and nitroethane in dry methanol under basic conditions produces a macrocyclic product, (cis-3,11-dimethyl-3,11-dinitro-1,5,9,13-tetraazacyclohexadecane)copper(II) perchlorate, in low yield, compared with the good yield obtained in the parallel chemistry possible even under aqueous conditions using palladium(II) as a template. The palladium complex was reduced with zinc amalgam in dilute aqueous acid to yield the metal-free 16-membered macrocyclic hexaamine, in this case re-complexed and characterised by an X-ray crystal structure as the (cis-3,11-dimethyl-1,5,9,13-tetraazacyclohexadecane-3,11-diamine)copper(II) perchlorate. The copper ion is found in a tetragonally elongated and trigonally-distorted octahedral environment, with all six of the ligand nitrogens coordinated, the two primary amine pendant groups occupying cis sites. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
The fine structure of a directed triple system of index lambda is the vector (c(1), c(2),...,C-lambda), where c(i) is the number of directed triples appearing precisely i times in the system. We determine necessary and sufficient conditions for a vector to be the fine structure of a directed triple system of index 3 for upsilon = 2 (mod 3).
Resumo:
Directed evolution of cytochrome P450 enzymes represents an attractive means of generating novel catalysts for specialized applications. Xenobiotic-metabolizing P450s are particularly well suited to this approach due to their inherent wide substrate specificity. In the present study, a novel method for DNA shuffling was developed using an initial restriction enzyme digestion step, followed by elimination of long parental sequences by size-selective filtration. P450 2C forms were subjected to a single round of shuffling then coexpressed with reductase in E. coli. A sample (54 clones) of the resultant library was assessed for sequence diversity, hemo- and apoprotein expression, and activity towards the substrate indole. All mutants showed a different RFLP pattern compared to all parents, suggesting that the library was free from contamination by parental forms. Haemoprotein expression was detectable in 45/54 (83%) of the mutants sampled. Indigo production was less than or comparable to the activities of one or more of the parental P450s, but three mutants showed indirubin production in excess of that seen with any parental form, representing a gain of function. In conclusion, a method is presented for the effective shuffling of P450 sequences to generate diverse libraries of mutant P450s containing a high proportion of correctly folded hemoprotein, and minimal contamination with parental forms.
Resumo:
Polydnaviruses are essential for the survival of many Ichneumonoid endoparasitoids, providing active immune suppression of the host in which parasitoid larvae develop. The Cotesia rubecula bracovirus is unique among polydnaviruses in that only four major genes are detected in parasitized host ( Pieris rapae) tissues, and gene expression is transient. Here we describe a novel C. rubecula bracovirus gene (CrV3) encoding a lectin monomer composed of 159 amino acids, which has conserved residues consistent with invertebrate and mammalian C-type lectins. Bacterially expressed CrV3 agglutinated sheep red blood cells in a divalent ion-dependent but Ca2+-independent manner. Agglutination was inhibited by EDTA but not by biological concentrations of any saccharides tested. Two monomers of similar to14 and similar to17 kDa in size were identified on SDS-PAGE in parasitized P. rapae larvae. The 17-kDa monomer was found to be an N-glyscosylated form of the 14-kDa monomer. CrV3 is produced in infected hemocytes and fat body cells and subsequently secreted into hemolymph. We propose that CrV3 is a novel lectin, the first characterized from an invertebrate virus. CrV3 shows over 60% homology with hypothetical proteins isolated from polydnaviruses in two other Cotesia wasps, indicating that these proteins may also be C-type lectins and that a novel polydnavirus lectin family exists in Cotesia-associated bracoviruses. CrV3 is probably interacting with components in host hemolymph, resulting in suppression of the Pieris immune response. The high similarity of CrV3 with invertebrate lectins, as opposed to those from viruses, may indicate that some bracovirus functions were acquired from their hosts.
Resumo:
The crystal structure of six functionally-distinct enzymes of the DMSO reductase family of molybdenum enzymes has revealed that the tertiary structure of the polypeptide that binds the bis(MGD)Mo cofactor is highly conserved. Differences in the catalytic properties of enzymes of this family are almost certainly dependent upon differences in the structure ofthe MO active site. In DMSO reductase from Rhodobacter species tryptophan- 116 (W 116) hydrogen-bonds to an 0x0 group coordinated to the MO ion. In addition a second amino acid side chain from tyrosine-114 (Y 114) is in close proximity to the 0x0 group. We have investigated the role of Y 114 and W 116 in DMSO reductase using site-directed mutagenesis,
Resumo:
We describe here two new transposable elements, CemaT4 and CemaT5, that were identified within the sequenced genome of Caenorhabditis elegans using homology based searches. Five variants of CemaT4 were found, all non-autonomous and sharing 26 bp inverted terminal repeats (ITRs) and segments (152-367 bp) of sequence with similarity to the CemaT1 transposon of C. elegans. Sixteen copies of a short, 30 bp repetitive sequence, comprised entirely of an inverted repeat of the first 15 bp of CemaT4's ITR, were also found, each flanked by TA dinucleotide duplications, which are hallmarks of target site duplications of mariner-Tc transposon transpositions. The CemaT5 transposable element had no similarity to maT elements, except for sharing identical ITR sequences with CemaT3. We provide evidence that CemaT5 and CemaT3 are capable of excising from the C. elegans genome, despite neither transposon being capable of encoding a functional transposase enzyme. Presumably, these two transposons are cross-mobilised by an autonomous transposon that recognises their shared ITRs. The excisions of these and other non-autonomous elements may provide opportunities for abortive gap repair to create internal deletions and/or insert novel sequence within these transposons. The influence of non-autonomous element mobility and structural diversity on genome variation is discussed.