9 resultados para Hole effect model
em University of Queensland eSpace - Australia
Resumo:
Recent years have witnessed intense research in multiple input multiple output (MIMO) wireless communications systems, which use multiple element antennas (MEA) for signal transmission and reception. In this paper, we have described a novel electromagnetic model to investigate the effect of mutual coupling, inter-element spacing and array geometry on the capacity of MIMO systems. Simulation results have been presented illustrating the application of the proposed model. The presented model concept stems from a hollow waveguide analogue. Using this model other aspects such as richness of scattering environment (spacing and clustering), the effect of hard versus soft scatterers and pin hole effect can be investigated.
Resumo:
Objectives: This pilot study describes a modelling approach to translate group-level changes in health status into changes in preference values, by using the effect size (ES) to summarize group-level improvement. Methods: ESs are the standardized mean difference between treatment groups in standard deviation (SD) units. Vignettes depicting varying severity in SD decrements on the SF-12 mental health summary scale, with corresponding symptom severity profiles, were valued by a convenience sample of general practitioners (n = 42) using the rating scale (RS) and time trade-off methods. Translation factors between ES differences and change in preference value were developed for five mental disorders, such that ES from published meta-analyses could be transformed into predicted changes in preference values. Results: An ES difference in health status was associated with an average 0.171-0.204 difference in preference value using the RS, and 0.104-0.158 using the time trade off. Conclusions: This observed relationship may be particular to the specific versions of the measures employed in the present study. With further development using different raters and preference measures, this approach may expand the evidence base available for modelling preference change for economic analyses from existing data.
Resumo:
We analyse the relation between local two-atom and total multi-atom entanglements in the Dicke system composed of a large number of atoms. We use concurrence as a measure of entanglement between two atoms in the multi-atom system, and the spin squeezing parameter as a measure of entanglement in the whole n-atom system. In addition, the influence of the squeezing phase and bandwidth on entanglement in the steady-state Dicke system is discussed. It is shown that the introduction of a squeezed field leads to a significant enhancement of entanglement between two atoms, and the entanglement increases with increasing degree of squeezing and bandwidth of the incident squeezed field. In the presence of a coherent field the entanglement exhibits a strong dependence on the relative phase between the squeezed and coherent fields, that can jump quite rapidly from unentangled to strongly entangled values when the phase changes from zero to pi. We find that the jump of the degree of entanglement is due to a flip of the spin squeezing from one quadrature component of the atomic spin to the other component when the phase changes from zero to pi. We also analyse the dependence of the entanglement on the number of atoms and find that, despite the reduction in the degree of entanglement between two atoms, a large entanglement is present in the whole n-atom system and the degree of entanglement increases as the number of atoms increases.