17 resultados para Histidine
em University of Queensland eSpace - Australia
Resumo:
The albA gene from Klebsiella oxytoca encodes a protein that binds albicidin phytotoxins and antibiotics with high affinity. Previously, it has been shown that shifting pH from 6 to 4 reduces binding activity of AlbA by about 30%, indicating that histidine residues might be involved in substrate binding. In this study, molecular analysis of the albA coding region revealed sequence discrepancies with the albA sequence reported previously, which were probably due to sequencing errors. The albA gene was subsequently cloned from K oxytoca ATCC 13182(T) to establish the revised sequence. Biochemical and molecular approaches were used to determine the functional role of four histidine residues (His(78), HiS(125), HiS(141) and His(189)) in the corrected sequence for AlbA. Treatment of AlbA with diethyl pyrocarbonate (DEPC), a histidine-specific alkylating reagent, reduced binding activity by about 95%. DEPC treatment increased absorbance at 240-244 nm by an amount indicating conversion to N-carbethoxyhistidine of a single histidine residue per AlbA molecule. Pretreatment with albicidin protected AlbA against modification by DEPC, with a 1 : 1 molar ratio of albicidin to the protected histidine residues. Based on protein secondary structure and amino acid surface probability indices, it is predicted that HiS125 might be the residue required for albicidin binding. Mutation of HiS125 to either alanine or leucine resulted in about 32% loss of binding activity, and deletion of HiS125 totally abolished binding activity. Mutation of HiS125 to arginine and tyrosine had no effect. These results indicate that HiS125 plays a key role either in an electrostatic interaction between AlbA and albicidin or in the conformational dynamics of the albicidin-binding site.
Resumo:
Rising costs of antimalarial agents are increasing the demand for accurate diagnosis of malaria. Rapid diagnostic tests (RDTs) offer great potential to improve the diagnosis of malaria, particularly in remote areas. Many RDTs are based on the detection of Plasmodium falciparum histidine-rich protein (PfHRP) 2, but reports from field tests have questioned their sensitivity and reliability. We hypothesize that the variability in the results of PfHRP2-based RDTs is related to the variability in the target antigen. We tested this hypothesis by examining the genetic diversity of PfHRP2, which includes numerous amino acid repeats, in 75 P. falciparum lines and isolates originating from 19 countries and testing a subset of parasites by use of 2 PfHRP2-based RDTs. We observed extensive diversity in PfHRP2 sequences, both within and between countries. Logistic regression analysis indicated that 2 types of repeats were predictive of RDT detection sensitivity (87.5% accuracy), with predictions suggesting that only 84% of P. falciparum parasites in the Asia-Pacific region are likely to be detected at densities
Resumo:
This Article Right arrow Full Text Right arrow Full Text (PDF) Right arrow Supplemental material Right arrow Alert me when this article is cited Right arrow Alert me if a correction is posted Services Right arrow Similar articles in this journal Right arrow Similar articles in PubMed Right arrow Alert me to new issues of the journal Right arrow Download to citation manager Right arrow Reprints and Permissions Right arrow Copyright Information Right arrow Books from ASM Press Right arrow MicrobeWorld Citing Articles Right arrow Citing Articles via HighWire Right arrow Citing Articles via Google Scholar Google Scholar Right arrow Articles by Lee, N. Right arrow Articles by McCarthy, J. Right arrow Search for Related Content PubMed Right arrow PubMed Citation Right arrow Articles by Lee, N. Right arrow Articles by McCarthy, J. Right arrow Pubmed/NCBI databases * Substance via MeSH Previous Article | Next Article Journal of Clinical Microbiology, August 2006, p. 2773-2778, Vol. 44, No. 8 0095-1137/06/$08.00+0 doi:10.1128/JCM.02557-05 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Effect of Sequence Variation in Plasmodium falciparum Histidine- Rich Protein 2 on Binding of Specific Monoclonal Antibodies: Implications for Rapid Diagnostic Tests for Malaria{dagger} Nelson Lee,1,2 Joanne Baker,2 Kathy T. Andrews,1 Michelle L. Gatton,1,3 David Bell,4 Qin Cheng,2,3 and James McCarthy1* Australian Centre for International and Tropical Health and Nutrition, Queensland Institute of Medical Research and School of Population Health, University of Queensland, Queensland, Australia,1 Department of Drug Resistance and Diagnostics, Australian Army Malaria Institute, Brisbane, Australia,2 Malaria Drug Resistance and Chemotherapy, Queensland Institute of Medical Research, Queensland, Australia,3 World Health Organization, Regional Office for the Western Pacific, Manila, Philippines4 Received 8 December 2005/ Returned for modification 23 February 2006/ Accepted 26 May 2006 The ability to accurately diagnose malaria infections, particularly in settings where laboratory facilities are not well developed, is of key importance in the control of this disease. Rapid diagnostic tests (RDTs) offer great potential to address this need. Reports of significant variation in the field performance of RDTs based on the detection of Plasmodium falciparum histidine-rich protein 2 (HRP2) (PfHRP2) and of significant sequence polymorphism in PfHRP2 led us to evaluate the binding of four HRP2-specific monoclonal antibodies (MABs) to parasite proteins from geographically distinct P. falciparum isolates, define the epitopes recognized by these MABs, and relate the copy number of the epitopes to MAB reactivity. We observed a significant difference in the reactivity of the same MAB to different isolates and between different MABs tested with single isolates. When the target epitopes of three of the MABs were determined and mapped onto the peptide sequences of the field isolates, significant variability in the frequency of these epitopes was observed. These findings support the role of sequence variation as an explanation for variations in the performance of HRP2-based RDTs and point toward possible approaches to improve their diagnostic sensitivities
Resumo:
A central event in the invasion of a host cell by an enveloped virus is the fusion of viral and cell membranes. For many viruses, membrane fusion is driven by specific viral surface proteins that undergo large-scale conformational rearrangements, triggered by exposure to low pH in the endosome upon internalization. Here, we present evidence suggesting that in both class I (helical hairpin proteins) and class 11 (beta-structure-rich proteins) pH-dependent fusion proteins the protonation of specific histidine residues triggers fusion via an analogous molecular mechanism. These histidines are located in the vicinity of positively charged residues in the prefusion conformation, and they subsequently form salt bridges with negatively charged residues in the postfusion conformation. The molecular surfaces involved in the corresponding structural rearrangements leading to fusion are highly conserved and thus might provide a suitable common target for the design of antivirals, which could be active against a diverse range of pathogenic viruses.
Resumo:
Individual and combined supplementation of phosphorus-adequate, wheat-based broiler diets with exogenous phytase and xylanase was evaluated in three experiments. The effects of the enzyme combination in lysine-deficient diets containing wheat and sorghum were more pronounced than those of the individual feed enzymes. The inclusion of phytase plus xylanase improved (p<0.05) weight gains (7.3%) and feed efficiency (7.0%) of broilers (7-28 days post-hatch) and apparent metabolisable energy (AME) by 0.76 MJ/kg DM. Phytase plus xylanase increased (p<0.05) the overall, apparent ileal digestibility of amino acids by 4.5% (0.781 to 0.816); this was greater than the responses to either phytase (3.6%; 0.781 to 0.809) or xylanase (0.7%; 0.781 to 0.784). Absolute increases in amino acid digestibility with the combination exceeded the sum of the individual increases generated by phytase and xylanase for alanine, aspartic acid, glutamic acid, glycine, histidine, isoleucine, phenylalanine, threonine, tyrosine and valine. These synergistic responses may have resulted from phytase and xylanase having complementary modes of action for enhancing amino acid digestibilities and/or facilitating substrate access. The two remaining experiments were almost identical except wheat used in Experiment 2 had a higher phytate concentration and a lower estimated AME content than wheat used in Experiment 3. Individually, phytase and xylanase were generally more effective in Experiment 2, which probably reflects the higher dietary substrate levels present. Phytase plus xylanase increased (p<0.05) gains (15.4%) and feed efficiency (7.0%) of broiler chicks from 4-24 days post-hatch in Experiment 2; whereas, in Experiment 3, the combination increased (p<0.05) growth to a lesser extent (5.6%) and had no effect on feed efficiency. This difference in performance responses appeared to be 'protein driven' as the combination increased (p<0.05) nitrogen retention in Experiment 2 but not in Experiment 3; whereas phytase plus xylanase significantly increased AME in both experiments. In Experiments 2 and 3 the combined inclusion levels of phytase and xylanase were lower that the individual additions, which demonstrates the benefits of simultaneously including phytase and xylanase in wheat-based poultry diets.
Resumo:
Alpha helices are key structural components of proteins and important recognition motifs in biology. New techniques for stabilizing short peptide helices could be valuable for studying protein folding, modeling proteins, creating artificial proteins, and may aid the design of inhibitors or mimics of protein function. We previously reported* that 5-15 residue peptides, corresponding to the Zn-binding domain of thermolysin, react with [Pd(en)(ONO,),]in DMF-d’ and 90% H,O 10% DzO to form a 22-membered [Pd(en)(H*ELTH*)]2+ macrocycle that is helical in solution and acts as a template in nucleating helicity in both Cand N- terminal directions within the longer sequences in DMF. ~f~~&g7$$& d&qx~m ~. y AC&q& In water, however, there was less a-helicity observed, testifying to #..q,& &$--Lb &l-- &.$;,J~p?:~~q&~+~~ ’ w w the difficulty of fixing intramolecular amide NH...OC H-bonds in 6,“;;” ( k.$ U”C.a , p d$. competition with the H-bond donor solvent water. To expand the utility of [Pd(en)(H*XXXH*)]*+ as a helix- @r4”8 & oJ#:& &G& @-qd ,‘d@-gyp promoting module in solution, we now report the result that Ac- ‘$4: %$yyy + H*ELTH*H*VTDH*-NH,(l), AC-H*ELTH*AVTDYH*ELTH*- NH, (2) and AC-H*AAAH*H*ELTH*H*VTDH*-NH* (3) react with multiple equivalents of [Pd(en)(ONO,),] to produce exclusively 4-6 respectively in both DMF-d7 and water (90% Hz0 10% D,O). Mass spectrometry, 15N- and 2D ‘H- NMR spectroscopy, and CD spectra were used to characterise the structures 4-6, and their three dimensional structures were calculated from NOE restraints using simulated annealing protocols. Results demonstrate (a) selective coordination of metal ions at (i, i+4) histidine positions in water and DMF, (b) incorporation of 2 and 3 a turn-mimicking modules [Pd(en)(HELTH)]2+ in lo-15 residue peptides, and (c) facile conversion of unstructured peptides into 3- and 4- turn helices of macrocycles, with well defined a-helicity throughout and more structure in DMF than in water.
Resumo:
The aim of the present study was to compare the protein-free diet, guanidinated casein (GuC) and enzyme hydrolysed casein (EHC) methods for the quantification of endogenous amino acid (AA) flow in the avian ileum. Growing broiler chickens (5 weeks old) were used. All three assay diets were based on dextrose, and in the GuC and EHC diets GuC or EHC were the sole source of N. Endogenous AA flows determined with the use of protein-free diet were considerably lower (P < 0.05) than those determined by the GuC and EHC methods. The, total endogenous AA flows determined by the GuC and EHC methods were almost 3-fold greater (P < 0.05) than those determined by the protein-free diet. The endogenous AA values obtained from GuC and EHC methods were similar (P >0.05), except for the flow of arginine, which was lower (P < 0.05) in the EHC method. Glutamic acid, aspartic acid, threonine and glycine were the predominant endogenous AA present in digesta from the distal ileum. The contents of methionine, histidine and cystine were lower compared with other AA. The method of determination had no effect on the AA composition of endogenous protein, except for threonine, glutamic acid, lysine, arginine and cystine. The concentrations of threonine and arginine were lower (P < 0.05) and that of lysine was higher (P < 0.05) with the EHC method compared with the other two methods. The concentration of glutamic acid was greater (P < 0.05) and that of cystine was lower (P < 0.05) in the EHC and GuC methods compared with the protein-free diet method. The results showed that the ileal endogenous flows of N and AA are markedly enhanced by the presence of protein and peptides, above those determined following feeding of a protein-free diet. It is concluded that the use of EHC and GuC methods enables the measurement of ileal endogenous losses in chickens under normal physiological conditions.
Resumo:
Virulence of the opportunistic pathogen Pseudomonas aeruginosa involves the coordinate expression of a wide range of virulence factors including type IV pili which are required for colonization of host tissues and are associated with a form of surface translocation termed twitching motility. Twitching motility in P. aeruginosa is controlled by a complex signal transduction pathway which shares many modules in common with chemosensory systems controlling flagella rotation in bacteria and which is composed, in part, of the previously described proteins PilG, PilH, PilI, PilJ and PilK. Here we describe another three components of this pathway: ChpA, ChpB and ChpC, as well as two downstream genes, ChpD and ChpE, which may also be involved. The central component of the pathway, ChpA, possesses nine potential sites of phosphorylation: six histidine-containing phosphotransfer (HPt) domains, two novel serine- and threonine-containing phosphotransfer (SPt, TPt) domains and a CheY-like receiver domain at its C-terminus, and as such represents one of the most complex signalling proteins yet described in nature. We show that the Chp chemosensory system controls twitching motility and type IV pili biogenesis through control of pili assembly and/or retraction as well as expression of the pilin subunit gene pilA. The Chp system is also required for full virulence in a mouse model of acute pneumonia.
Resumo:
1. Protein utilisation and turnover were measured in male chickens sampled from a line selected for high breast yield and a randombred control line (lines QL and CL, experiment 1) and in male chickens sampled from lines selected for either high or low abdominal fatness (lines FL and LL, experiment 2). In each experiment, 18 birds per line were given iso-energetic (12.9 MJ ME/kg) diets containing either 120 or 220 g CP/kg from 21 to 29 d (experiment 1) and 33 to 43 d (experiment 2). 2. Measurements were made of growth rate, food intake, body composition, excreta production and N-tau-methylhistidine excretion as a measure of myofibrillar protein breakdown, and fractional rates (%/d) of protein deposition, breakdown and synthesis were calculated. 3. In experiment 1, there were no significant differences between the line means for the fractional measures of protein turnover, but there was marked differential response in the two lines in the fractional rates of protein deposition, breakdown and synthesis, to increase in protein intake. The positive slope of the regressions of fractional (%/d) protein deposition and synthesis rates on protein intake (g/d/kg BW) were approximately 1.4- and 2.0-fold higher respectively in the QL than the CL line birds, and the negative slope of the regression of fractional breakdown rate on protein intake was approximately threefold greater in the CL than the QL line birds. 4. In experiment 2, fractional deposition rate was 6.2% lower, but fractional breakdown rate 9.4% higher in the LL than the FL birds, whilst there was essentially no difference in response of the FL and LL birds in the components of protein turnover to increase in protein intake. Line differences in deposition and breakdown rates were thus a reflection of the considerably higher (20%) food and hence protein intake in the FL than the LL birds. 5. The differential line responses in protein turnover in the two experiments suggest that selection for increased breast muscle yield and for reduced body fatness manipulate different physiological pathways in relation to protein turnover, but neither selection strategy results in an improvement in net protein utilisation at typical levels of protein intake by birds on commercial broiler diets, through a reduction in protein breakdown rate.
Resumo:
Virulence of Pseudomonas aeruginosa involves the co-ordinate expression of a range of factors including type IV pili (tfp), the type III secretion system (TTSS) and quorum sensing. Tfp are required for twitching motility, efficient biofilm formation, and for adhesion and type III secretion (TTS)-mediated damage to mammalian cells. We describe a novel gene (fimL) that is required for tfp biogenesis and function, for TTS and for normal biofilm development in P. aeruginosa. The predicted product of fimL is homologous to the N-terminal domain of ChpA, except that its putative histidine and threonine phosphotransfer sites have been replaced with glutamine. fimL mutants resemble vfr mutants in many aspects including increased autolysis, reduced levels of surface-assembled tfp and diminished production of type III secreted effectors. Expression of vfr in trans can complement fimL mutants. vfr transcription and production is reduced in fimL mutants whereas cAMP levels are unaffected. Deletion and insertion mutants of fimL frequently revert to wild-type phenotypes suggesting that an extragenic suppressor mutation is able to overcome the loss of fimL. vfr transcription and production, as well as cAMP levels, are elevated in these revertants, while Pseudomonas quinolone signal (PQS) production is reduced. These results suggest that the site(s) of spontaneous mutation is in a gene(s) which lies upstream of vfr transcription, cAMP, production, and PQS synthesis. Our studies indicate that Vfr and FimL are components of intersecting pathways that control twitching motility, TTSS and autolysis in P. aeruginosa.
Resumo:
Rhodobacter capsulatus NtrB/NtrC two-component regulatory system controls expression of genes involved in nitrogen metabolism including urease and nitrogen fixation genes. The ntrY-ntrX genes, which are located immediately downstream of the nifR3-ntrB-ntrC operon, code for a two-component system of unknown function. Transcription of ntrY starts within the ntrC-ntrY intergenic region as shown by primer extension analysis, but maximal transcription requires, in addition, the promoter of the nifR3-ntrB-ntrC operon. While ntrB and ntrY single mutant strains were able to grow with either urea or N-2 as sole nitrogen source, a ntrB/ntrY double mutant (like a ntrC-deficient strain) was no longer able to use urea or N-2. These findings suggest that the histidine kinases NtrB and NtrY can substitute for each other as phosphodonors towards the response regulator NtrC.
Resumo:
Failure to express soluble proteins in bacteria is mainly attributed to the properties of the target protein itself, as well as the choice of the vector, the purification tag and the linker between the tag and protein, and codon usage. The expression of proteins with fusion tags to facilitate subsequent purification steps is a widely used procedure in the production of recombinant proteins. However, the additional residues can affect the properties of the protein; therefore, it is often desirable to remove the tag after purification. This is usually done by engineering a cleavage site between the tag and the encoded protein that is recognised by a site-specific protease, such as the one from tobacco etch virus (TEV). In this study, we investigated the effect of four different tags on the bacterial expression and solubility of nine mouse proteins. Two of the four engineered constructs contained hexahistidine tags with either a long or short linker. The other two constructs contained a TEV cleavage site engineered into the linker region. Our data show that inclusion of the TEV recognition site directly downstream of the recombination site of the Invitrogen Gateway vector resulted, in a loss of solubility of the nine mouse proteins. Our work suggests that one needs to be very careful when making modifications to expression vectors and combining different affinity and fusion tags and cleavage sites: (c) 2006 Elsevier Inc. All rights reserved.