25 resultados para High velocity oxy-fuel (HVOF) spraying
em University of Queensland eSpace - Australia
Resumo:
Background: The age-related loss of muscle power in older adults is greater than that of muscle strength and is associated with a decline in physical performance. Objective: To investigate the effects of a short-term high-velocity varied resistance training programme on physical performance in healthy community-dwelling adults aged 60-80 years. Methods: Subjects undertook exercise (EX; n = 15) or maintained customary activity (controls, CON; n = 10) for 8 weeks. The EX group trained 2 days/week using machine weights for three sets of eight repetitions at 35, 55, and 75% of their one-repetition maximum (the maximal weight that an individual can lift once with acceptable form) for seven upper- and lower-body exercises using explosive concentric movements. Results: Fourteen EX and 10 CON subjects completed the study. Dynamic muscle strength significantly increased (p = 0.001) in the EX group for all exercises (from 21.4 +/- 9.6 to 82.0 +/- 59.2%, mean +/- SD) following training, as did knee extension power (p < 0.01). Significant improvement occurred for the EX group in the floor rise to standing (10.4 &PLUSMN; 11.5%, p = 0.004), usual 6-metre walk (6.6 &PLUSMN; 8.2%, p = 0.010), repeated chair rise (10.4 &PLUSMN; 15.6%, p = 0.013), and lift and reach (25.6 &PLUSMN; 12.1%, p = 0.002) performance tasks but not in the CON group. Conclusions: Progressive resistance training that incorporates rapid rate-of-force development movements may be safely undertaken in healthy older adults and results in significant gains in muscle strength, muscle power, and physical performance. Such improvements could prolong functional independence and improve the quality of life. Copyright (C) 2005 S. Karger AG, Basel.
Resumo:
We present the HIPASS Bright Galaxy Catalog (BGC), which contains the 1000 H I brightest galaxies in the southern sky as obtained from the H i Parkes All-Sky Survey ( HIPASS). The selection of the brightest sources is based on their H I peak flux density (S-peak greater than or similar to116 mJy) as measured from the spatially integrated HIPASS spectrum. The derived H I masses range from similar to10(7) to 4 x 10(10) M-.. While the BGC ( z< 0.03) is complete in S-peak, only a subset of &SIM;500 sources can be considered complete in integrated H I flux density (F-H I &GSIM;25 Jy km s(-1)). The HIPASS BGC contains a total of 158 new redshifts. These belong to 91 new sources for which no optical or infrared counterparts have previously been cataloged, an additional 51 galaxies for which no redshifts were previously known, and 16 galaxies for which the cataloged optical velocities disagree. Of the 91 newly cataloged BGC sources, only four are definite H I clouds: while three are likely Magellanic debris with velocities around 400 km s(-1), one is a tidal cloud associated with the NGC 2442 galaxy group. The remaining 87 new BGC sources, the majority of which lie in the zone of avoidance, appear to be galaxies. We identified optical counterparts to all but one of the 30 new galaxies at Galactic latitudes > 10degrees. Therefore, the BGC yields no evidence for a population of free-floating'' intergalactic H I clouds without associated optical counterparts. HIPASS provides a clear view of the local large-scale structure. The dominant features in the sky distribution of the BGC are the Supergalactic Plane and the Local Void. In addition, one can clearly see the Centaurus Wall, which connects via the Hydra and Antlia Clusters to the Puppis Filament. Some previously hardly noticable galaxy groups stand out quite distinctly in the H I sky distribution. Several new structures, including some not behind the Milky Way, are seen for the first time.
Resumo:
When a gas is introduced at high velocity through a nozzle into a packed bed, it creates a raceway in the packed bed. It has been found that the raceway size is larger when it is formed by decreasing the gas velocity from its highest value than when it is formed by increasing the gas velocity. This phenomenon is known as raceway hysteresis. A hypothesis has been oroposed to explain the hysteresis phenomenon based on a force-balance approach which includes frictional, bed-weight, and pressure forces. According to this hypothesis, the frictional force acts in different directions when the raceway is expanding and contracting. In this article, the entire packed bed has been divided into radial and Cartesian co-ordinate systems, and the forces acting on the raceway have been solved analytically for a simplified one-dimensional case. Based on the force-balance approach, a general equation has been obtained to predict the diameter of the raceway for increasing And decreasing velocities. A reasonable agreement has been found between the theoretical predictions and experimental observations. The model has also been compared with published experimental and plant data. The hysteresis mechanism in the packed beds can be described reasonably by taking into consideration the direction of frictional forces for the increasing- and decreasin-velocity cases. The effects of the particleshape factor and void fraction on the raceway hysteresis are examined.
Resumo:
A novel apparatus, high-pressure/high-temperature nickel flow loop, was constructed to study the effect of the flow on the rate of erosion-corrosion of mild steel in hot caustic. It has been successfully used to measure the corrosion rate of 1020 steel in 2.75 M NaOH solution at a temperature of 160 degrees C and velocities of 0.32 and 2.5 m/s. In situ electrochemical methods were used to measure the corrosion rate such as the potentiodynamic sweep, the polarization resistance method, and electrochemical impedance spectroscopy (EIS). Also used were the weight-loss method and scanning electron microscopy (SEM). Eight electrodes/coupons were used to monitor the metal loss rate, four were placed at the low velocity section, while the other four were placed in the high velocity section. The first three coupons in each section were placed within the disturbed flow region, while the fourth was placed in a fully developed flow region. The corrosion rate of the coupons in the high velocity section was generally higher than that of the coupons in the low velocity section. One coupon in the disturbed flow region had a significantly higher corrosion rate than the others. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Corrosion rates of 1020 steel in 2.75 M NaOH solution at a temperature of 160 degrees C and velocities of 0.32 and 2.5 m/s were studied. The focus was on the effect of the acid cleaning which was performed by using strong, inhibited sulphuric acid in between the exposures to caustic. In situ electrochemical methods were used to measure the corrosion rate such as the potentiodynamic sweep and the polarization resistance method. Also used were the weight-loss method and scanning electron microscopy (SEM). Eight electrodes/coupons were used to monitor the metal loss rate, four were placed at the low velocity section, while the other four were placed in the high velocity section of a high temperature flow. The first three coupons in each section were placed within the disturbed flow region, while the fourth was placed in a fully developed flow region. During the exposure of mild steel to the inhibited acid, following the first caustic period, the corrosion rate increased significantly to between 3 and 10mm/y with a few electrodes experiencing as high as 50 mm/y. The second caustic period following the acidic period typically started with very high corrosion rates (20-80 mm/y). The length of this corrosion period was typically 2-3 h with a few exceptions when the high corrosion period lasted 7-10 h. Following the very high corrosion rates experienced at the beginning of the second caustic period, the corrosion rates were reduced sharply (as the corrosion potential increased) to nearly the same levels as those observed during the passive part of the first caustic period. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
New data on the settling velocity of artificial sediments and natural sands at high concentrations are presented. The data are compared with a widely used semiempirical Richardson and Zaki equation (Trans. Inst. Chem. Eng. 32 (1954) 35), which gives an accurate measure of the reduction in velocity as a function of concentration and an experimentally determined empirical power n. Here, a simple method of determining n is presented using standard equations for the clear water settling velocity and the seepage flow within fixed sediment beds. The resulting values for n are compared against values derived from new and existing laboratory data for beach and filter sands. For sands, the appropriate values of n are found to differ significantly from those suggested by Richardson and Zaki for spheres, and are typically larger, corresponding to a greater reduction in settling velocity at high concentrations. For fine and medium sands at concentrations of order 0.4, the hindered settling velocity reduces to about 70% of that expected using values of n derived for spheres. At concentrations of order 0.15, the hindered settling velocity reduces to less than half of the settling velocity in clear water. These reduced settling velocities have important implications for sediment transport modelling close to, and within, sheet flow layers and in the swash zone.
Resumo:
This study examines the effect of increasing water depth and water velocity upon the surfacing behaviour of the bimodally respiring turtle, Rheodytes leukops. Surfacing frequency was recorded for R. leukops at varying water depths (50, 100, 150 cm) and water velocities (5, 15, 30 cm s(-1)) during independent trials to provide an indirect cost-benefit analysis of aquatic versus pulmonary respiration. With increasing water velocity, R. leukops decreased its surfacing frequency twentyfold, thus suggesting a heightened reliance upon aquatic gas exchange. An elevated reliance upon aquatic respiration, which presumably translates into a decreased air-breathing frequency, may be metabolically more efficient for R. leukops compared to the expenditure (i.e. time and energy) associated with air-breathing within fast-flowing riffle zones. Additionally, R. leukops at higher water velocities preferentially selected low-velocity microhabitats, presumably to avoid the metabolic expenditure associated with high water flow. Alternatively, increasing water depth had no effect upon the surfacing frequency of R. leukops, suggesting little to no change in the respiratory partitioning of the species across treatment settings. Routinely long dives (>90 min) recorded for R. leukops indicate a high reliance upon aquatic O-2 uptake regardless of water depth. Moreover, metabolic and temporal costs attributed to pulmonary gas exchange within a pool-like environment were likely minimal for R. leukops, irrespective of water depth.
Resumo:
The manufacture of a radio frequency filter box using high pressure die casting (HPDC) is compared to the traditional high speed machining route. This paper describes an industrial exercise that concluded HPDC to be an economical and appropriate method to produce larger volumes of thin-walled telecommunications components. Modifications to the component design were made to make the component suitable for the HPDC process. Development of the die design through simulation modelling is described. The wrought alloy was replaced by near-eutectic Al-Si die casting alloy that was found to give better temperature stability performance. Apart from the economic benefits, HPDC was found to give lower filter efficiency losses through better surface finish. The effects of HPDC process variables, such as intensification pressure and injection piston velocity, on component quality, particularly porosity levels, were investigated. The pressure was analysed in terms of HPDC machine set pressure and the pressure measured in the die cavity by pressure sensors. Porosity was found to decrease with increased pressure and slightly increase with higher casting velocities.
Resumo:
In modern magnetic resonance imaging, both patients and health care workers are exposed to strong. non-uniform static magnetic fields inside and outside of the scanner. In which body movement may be able to induce electric currents in tissues which could be potentially harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in a tissue-equivalent human model when moving at various positions around the magnet. The numerical calculations are based on an efficient. quasi-static, finite-difference scheme. Three-dimensional field profiles from an actively shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The methodology presented herein can be extrapolated to very high field strengths for the evaluation of the effects of motion at a variety of field strengths and velocities. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A heat transfer coefficient gauge has been built, obeying particular rules in order to ensure the relevance and accuracy of the collected information. The gauge body is made out of the same materials as the die casting die (H13). It is equipped with six thermocouples located at different depths in the body and with a sapphire light pipe. The light pipe is linked to an optic fibre, which is connected to a monochromatic pyrometer. Thermocouples and pyrometer measurements are recorded with a data logger. A high pressure die casting die was instrumented with one such gauge. A set of 150 castings was done and the data recorded. During the casting, some process parameters have been modified such as piston velocity, intensification pressure, delay before switch to the intensification stage, temperature of the alloy, etc.... The data was treated with an inverse method in order to transform temperature measurements into heat flux density and heat transfer coefficient plots. The piston velocity and the initial temperature of the die seem to be the process parameters that have the greatest influence on the heat transfer. (c) 2005 Elsevier B.V. All rights reserved.