24 resultados para High affinity thyromimetics
em University of Queensland eSpace - Australia
Resumo:
The albA gene from Klebsiella oxytoca encodes a protein that binds albicidin phytotoxins and antibiotics with high affinity. Previously, it has been shown that shifting pH from 6 to 4 reduces binding activity of AlbA by about 30%, indicating that histidine residues might be involved in substrate binding. In this study, molecular analysis of the albA coding region revealed sequence discrepancies with the albA sequence reported previously, which were probably due to sequencing errors. The albA gene was subsequently cloned from K oxytoca ATCC 13182(T) to establish the revised sequence. Biochemical and molecular approaches were used to determine the functional role of four histidine residues (His(78), HiS(125), HiS(141) and His(189)) in the corrected sequence for AlbA. Treatment of AlbA with diethyl pyrocarbonate (DEPC), a histidine-specific alkylating reagent, reduced binding activity by about 95%. DEPC treatment increased absorbance at 240-244 nm by an amount indicating conversion to N-carbethoxyhistidine of a single histidine residue per AlbA molecule. Pretreatment with albicidin protected AlbA against modification by DEPC, with a 1 : 1 molar ratio of albicidin to the protected histidine residues. Based on protein secondary structure and amino acid surface probability indices, it is predicted that HiS125 might be the residue required for albicidin binding. Mutation of HiS125 to either alanine or leucine resulted in about 32% loss of binding activity, and deletion of HiS125 totally abolished binding activity. Mutation of HiS125 to arginine and tyrosine had no effect. These results indicate that HiS125 plays a key role either in an electrostatic interaction between AlbA and albicidin or in the conformational dynamics of the albicidin-binding site.
Resumo:
Mannose-binding type 1 pili are important virulence factors for the establishment of Escherichia coli urinary tract infections (UTIs). These infections are initiated by adhesion of uropathogenic E. coli to uroplakin receptors in the uroepithelium via the FimH adhesin located at the tips of type 1 pili. Blocking of bacterial adhesion is able to prevent infection. Here, we provide for the first time binding data of the molecular events underlying type 1 fimbrial adherence, by crystallographic analyses of the FimH receptor binding domains from a uropathogenic and a K-12 strain, and affinity measurements with mannose, common mono- and disaccharides, and a series of alkyl and aryl mannosides. Our results illustrate that the lectin domain of the FimH adhesin is a stable and functional entity and that an exogenous butyl alpha- D-mannoside, bound in the crystal structures, exhibits a significantly better affinity for FimH (K-d = 0.15 muM) than mannose (K-d = 2.3 muM). Exploration of the binding affinities of alpha-D-mannosides with longer alkyl tails revealed affinities up to 5 nM. Aryl mannosides and fructose can also bind with high affinities to the FimH lectin domain, with a 100-fold improvement and 15-fold reduction in affinity, respectively, compared with mannose. Taken together, these relative FimH affinities correlate exceptionally well with the relative concentrations of the same glycans needed for the inhibition of adherence of type 1 piliated E. coli. We foresee that our findings will spark new ideas and initiatives for the development of UTI vaccines and anti-adhesive drugs to prevent anticipated and recurrent UTIs.
Resumo:
Interaction of Eph receptor tyrosine kinases with their membrane bound ephrin ligands initiates bidirectional signaling events that regulate cell migratory and adhesive behavior. Whole-mount in situ hybridization revealed overlapping expression of the Epha1 receptor and its high-affinity ligands ephrin A1 (Efna1) and ephrin A3 (Efna3) in the primitive streak and the posterior paraxial mesoderm during early mouse development. These results show complex and dynamic expression for all three genes with expression domains that are successively complementary, overlapping, and divergent. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
High concentrations of ammonium (up to 0.1 cmol/kg) have been observed below 1 m depth in a Vertosol soil near Warra in south-eastern Queensland. This study examined whether ammonium leaching could be responsible for the ammonium accumulation observed in the Warra soil. This was done by using quantity/intensity (Q/I) relationships to compare the ammonium retention capacity of the Warra soil with other similar soils throughout the region that did not contain elevated subsoil ammonium concentrations. Analysis of Q/I curves revealed that in the concentration range studied, the amount of ammonium retained on high affinity adsorption sites in all 3 soils was low, and the Warra soil was not significantly different from the other 2 soils. The ability of the soils to retain ammonium in the soil solution against leaching [i.e. their potential buffer capacity (PBC)] did differ between soils and was greatest at Warra. This indicates that at any one time the Warra soil holds more ammonium on the exchange complex and less in solution than the other soils examined. It was concluded that ammonium is no more likely to leach through the surface horizons of the Warra soil than the other soils examined. Indeed, the data indicated that the Warra soil probably has greater capacity to retain ammonium against leaching due to its greater PBC. Consequently, it is considered unlikely that leaching of ammonium has been a major contributor to the subsoil ammonium concentrations at Warra.
Resumo:
Fatty acids (FAs) are relatively small, hydrophobic and highly mobile molecular structures with vital biological functions and a ubiquitous distribution. Surprisingly, however, they can be rendered immunogenic. We have synthesised a novel immunogen in which dicarboxylic linoleic acid was conjugated to a carrier protein. Dicarboxylic fatty acids (DCA) differ from their normal counterparts only by their possession of a carboxyl group at each end of the molecule. When conjugated to proteins as haptens, they are, therefore, presented to the immune system with a free carboxyl group at the distal end, instead of a methyl group. Polyclonal IgG antibodies raised in response to this unique immunogen could bind not only conjugated hapten with high affinity, but also the equivalent free FA in mono and dicarboxylic form. Similar conjugates constructed from normal FAs produced much weaker antibody responses and could scarcely be considered antigenic at all. The cross-reactivities of the anti-DCA antibodies with FA variants differing in the number, position and configuration of their double bonds showed that the antibody paratope (binding site) was structured to accommodate the hapten in a way that depended on the precise shape of the acyl chain. We suggest that FAs become much more effective as B-cell epitopes when presented with their hydrophilic carboxyl group exposed on the surface of immunogenic conjugates. This type of epitope is determined by the particular double bond pattern of the unsaturated acyl chain, as well as the polar head group. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The interactions between Eph receptor tyrosine kinases and their ephrin ligands regulate cell migration and axon pathfinding. The EphA receptors are generally thought to become activated by ephrin-A ligands, whereas the EphB receptors interact with ephrin-B ligands. Here we show that two of the most widely studied of these molecules, EphB2 and ephrin-A5, which have never been described to interact with each other, do in fact bind one another with high affinity. Exposure of EphB2-expressing cells to ephrin-A5 leads to receptor clustering, autophosphorylation and initiation of downstream signaling. Ephrin-A5 induces EphB2-mediated growth cone collapse and neurite retraction in a model system. We further show, using X-ray crystallography, that the ephrin-A5-EphB2 complex is a heterodimer and is architecturally distinct from the tetrameric EphB2-ephrin-B2 structure. The structural data reveal the molecular basis for EphB2-ephrin-A5 signaling and provide a framework for understanding the complexities of functional interactions and crosstalk between A- and B-subclass Eph receptors and ephrins.
Resumo:
Elevated extracellular concentrations of the neurotransmitter glutamate are neurotoxic and directly contribute to CNS damage as a result of ischemic pathologies. However, the main contributors to this uncontrolled rise in glutamate are still unconfirmed. It has been reported that the reversal of high-affinity glutamate transporters is a significant contributing factor. Conversely, it has also Peen observed that these transporters continue to take up glutamate, albeit at a reduced saturation concentration, under ischemic conditions. We sought to determine whether glutamate transporters continue to remove glutamate from the extracellular space under ischemic conditions by pharmacologically modulating the activity of high-affinity retinal glutamate transporters during simulated ischemia in vitro. Retinal glutamate transporter activity was significantly reduced under these ischemic conditions. The suppression of retinal glutamate transporter activity, with the protein kinase C inhibitor chelerythrine, significantly reduced ischemic glutamate uptake and enhanced retinal neurodegeneration. These findings imply a limited but protective role for retinal glutamate transporters under certain ischemic conditions, suggesting that pharmacological enhancement of high-affinity glutamate transporter activity may reduce tissue damage and loss of function resulting from toxic extracellular glutamate concentrations. (C) 2004 Wiley-Liss, Inc.
Resumo:
Human C5a is a plasma protein with potent chemoattractant and pro-inflammatory properties, and its overexpression correlates with severity of inflammatory diseases. C5a binds to its G protein-coupled receptor (C5aR) on polymorphonuclear leukocytes (PMNLs) through a high-affinity helical bundle and a low-affinity C terminus, the latter being solely responsible for receptor activation. Potent and selective C5a antagonists are predicted to be effective anti-inflammatory drugs, but no pharmacophore for small molecule antagonists has yet been developed, and it would significantly aid drug design. We have hypothesized that a turn conformation is important for activity of the C terminus of C5a and herein report small cyclic peptides that are stable turn mimics with potent antagonism at C5aR on human PMNLs. A comparison of solution structures for the C terminus of C5a, small acyclic peptide ligands, and cyclic antagonists supports the importance of a turn for receptor binding. Competition between a cyclic antagonist and either C5a or an acyclic agonist for C5aR on PMNLs supports a common or overlapping binding site on the C5aR. Structure-activity relationships for 60 cyclic analogs were evaluated by competitive radioligand binding with C5a (affinity) and myeloperoxidase release (antagonist potency) from human PMNLs, with 20 compounds having high antagonist potencies (IC50, 20 nM(-1) muM). Computer modeling comparisons reveal that potent antagonists share a common cyclic backbone shape, with affinity-determining side chains of defined volume projecting from the cyclic scaffold. These results define a new pharmacophore for C5a antagonist development and advance our understanding of ligand recognition and receptor activation of this G protein-coupled receptor.
Resumo:
The microlocalization of Ras proteins to different microdomains of the plasma membrane is critical for signaling specificity. Here we examine the complex membrane interactions of H-ras with a combination of FRAP on live cells to measure membrane affinity and electron microscopy of intact plasma membrane sheets to spatially map microdomains. We show that three separable forces operate on H-ras at the plasma membrane. The lipid anchor, comprising a processed CAAX motif and two palmitic acid residues, generates one attractive force that provides a high-affinity interaction with lipid rafts. The adjacent hypervariable linker domain provides a second attractive force but for nonraft plasma membrane microdomains. Operating against the attractive interaction of the lipid anchor for lipid rafts is a repulsive force generated by the N-terminal catalytic domain that increases when H-ras is GTP loaded. These observations lead directly to a novel mechanism that explains how H-ras lateral segregation is regulated by activation state: GTP loading decreases H-ras affinity for lipid rafts and allows the hypervariable linker domain to target to nonraft microdomains, the primary site of H-ras signaling.
Resumo:
The high-affinity ligand-binding form of unactivated steroid receptors exists as a multicomponent complex that includes heat shock protein (Hsp)90; one of the immunophilins cyclophilin 40 (CyP40), FKBP51, or FKBP52; and an additional p23 protein component. Assembly of this heterocomplex is mediated by Hsp70 in association with accessory chaperones Hsp40, Hip, and Hop. A conserved structural element incorporating a tetratricopeptide repeat (TPR) domain mediates the interaction of the immunophilins with Hsp90 by accommodating the C-terminal EEVD peptide of the chaperone through a network of electrostatic and hydrophobic interactions. TPR cochaperones recognize the EEVD structural motif common to both Hsp90 and Hsp70 through a highly conserved clamp domain. In the present study, we investigated in vitro the molecular interactions between CyP40 and FKBP52 and other stress-related components involved in steroid receptor assembly, namely Hsp70 and Hop. Using a binding protein-retention assay with CyP40 fused to glutathione S-transferase immobilized on glutathione-agarose, we have identified the constitutively expressed form of Hsp70, heat shock cognate (Hsc)70, as an additional target for CyP40. Deletion mapping studies showed the binding determinants to be similar to those for CyP40-Hsp90 interaction. Furthermore, a mutational analysis of CyP40 clamp domain residues confirmed the importance of this motif in CyP40-Hsc70 interaction. Additional residues thought to mediate binding specificity through hydrophobic interactions were also important for Hsc70 recognition. CyP40 was shown to have a preference for Hsp90 over Hsc70. Surprisingly, FKBP52 was unable to compete with CyP40 for Hsc70 binding, suggesting that FKBP52 discriminates between the TPR cochaperone-binding sites in Hsp90 and Hsp70. Hop, which contains multiple units of the TPR motif, was shown to be a direct competitor with CyP40 for Hsc70 binding. Similar to Hop, CyP40 was shown not to influence the adenosine triphosphatase activity of Hsc70. Our results suggest that CyP40 may have a modulating role in Hsc70 as well as Hsp90 cellular function.
Three distinct molecular surfaces in ephrin-A5 are essential for a functional interaction with EphA3
Resumo:
Eph receptor tyrosine kinases (Ephs) function as molecular relays that interact with cell surface-bound ephrin ligands to direct the position of migrating cells. Structural studies revealed that, through two distinct contact surfaces on opposite sites of each protein, Eph and ephrin binding domains assemble into symmetric, circular heterotetramers. However, Eph signal initiation requires the assembly of higher order oligomers, suggesting additional points of contact. By screening a random library of EphA3 binding-compromised ephrin-A5 mutants, we have now determined ephrin-A5 residues that are essential for the assembly of high affinity EphA3 signaling complexes. In addition to the two interfaces predicted from the crystal structure of the homologous EphB2 center dot ephrin-B2 complex, we identified a cluster of 10 residues on the ephrin-A5 E alpha-helix, the E-F loop, the underlying H beta-strand, as well as the nearby B - C loop, which define a distinct third surface required for oligomerization and activation of EphA3 signaling. Together with a corresponding third surface region identified recently outside of the minimal ephrin binding domain of EphA3, our findings provide experimental evidence for the essential contribution of three distinct protein-interaction interfaces to assemble functional EphA3 signaling complexes.
Resumo:
The structures of acetylcholine-binding protein ( AChBP) and nicotinic acetylcholine receptor ( nAChR) homology models have been used to interpret data from mutagenesis experiments at the nAChR. However, little is known about AChBP-derived structures as predictive tools. Molecular surface analysis of nAChR models has revealed a conserved cleft as the likely binding site for the 4/7 alpha-conotoxins. Here, we used an alpha 3 beta 2 model to identify beta 2 subunit residues in this cleft and investigated their influence on the binding of alpha-conotoxins MII, PnIA, and GID to the alpha 3 beta 2 nAChR by two-electrode voltage clamp analysis. Although a beta 2-L119Q mutation strongly reduced the affinity of all three alpha-conotoxins, beta 2-F117A, beta 2-V109A, and beta 2-V109G mutations selectively enhanced the binding of MII and GID. An increased activity of alpha-conotoxins GID and MII was also observed when the beta 2-F117A mutant was combined with the alpha 4 instead of the alpha 3 subunit. Investigation of A10L-PnIA indicated that high affinity binding to beta 2-F117A, beta 2-V109A, and beta 2-V109G mutants was conferred by amino acids with a long side chain in position 10 (PnIA numbering). Docking simulations of 4/7 alpha-conotoxin binding to the alpha 3 beta 2 model supported a direct interaction between mutated nAChR residues and alpha-conotoxin residues 6, 7, and 10. Taken together, these data provide evidence that the beta subunit contributes to alpha-conotoxin binding and selectivity and demonstrate that a small cleft leading to the agonist binding site is targeted by alpha-conotoxins to block the nAChR.
Resumo:
Tertiapin, a short peptide from honey bee venom, has been reported to specifically block the inwardly rectifying K+ (Kir) channels, including G protein-coupled inwardly rectifying potassium channel (GIRK) 1 + GIRK4 heteromultimers and ROMK1 homomultimers. In the present study, the effects of a stable and functionally similar derivative of tertiapin, tertiapin-Q, were examined on recombinant human voltage-dependent Ca2+-activated large conductance K+ channel (BK or MaxiK; alpha-subunit or hSlo1 homomultimers) and mouse inwardly rectifying GIRK1 + GIRK2 (i.e., Kir3.1 and Kir3.2) heteromultimeric K+ channels expressed in Xenopus oocytes and in cultured newborn mouse dorsal root ganglion (DRG) neurons. In two-electrode voltage-clamped oocytes, tertiapin-Q (1-100 nM) inhibited BK-type K+ channels in a use- and concentration-dependent manner. We also confirmed the inhibition of recombinant GIRK1 + GIRK2 heteromultimers by tertiapin-Q, which had no effect on endogenous depolarization- and hyperpolarization-activated currents sensitive to extracellular divalent cations (Ca2+, Mg2+, Zn2+, and Ba2+) in defolliculated oocytes. In voltage-clamped DRG neurons, tertiapin-Q voltage- and use-dependently inhibited outwardly rectifying K+ currents, but Cs+-blocked hyperpolarization-activated inward currents including I-H were insensitive to tertiapin-Q, baclofen, barium, and zinc, suggesting absence of functional GIRK channels in the newborn. Under current-clamp conditions, tertiapin-Q blocked the action potential after hyperpolarization (AHP) and increased action potential duration in DRG neurons. Taken together, these results demonstrate that the blocking actions of tertiapin-Q are not specific to Kir channels and that the blockade of recombinant BK channels and native neuronal AHP currents is use-dependent. Inhibition of specific types of Kir and voltage-dependent Ca2+-activated K+ channels by tertiapin-Q at nanomolar range via different mechanisms may have implications in pain physiology and therapy.
Resumo:
Clark 1 (diphenylarsine chloride) and Clark 2 ( diphenylarsine cyanide) were used as chemical weapon agents (CWA), and the soil contamination by these CWA and their degraded products, diphenyl and phenyl arsenicals, has been one of the most serious environmental issues. In a series of comparisons in toxicity between trivalent and pentavalent arsenicals we investigated differences in the accumulation and toxicity of phenylarsine oxide (PAO(3+)) and phenylarsonic acid (PAA(5+)) in rat heart microvascular endothelial cells. Both the cellular association and toxicity of PAO(3+) were much higher than those of PAA(5+), and LC50 values of PAO(3+) and PAA(5+) were calculated to be 0.295 muM and 1.93 mM, respectively. Buthionine sulfoximine, a glutathione depleter, enhanced the cytotoxicity of both PAO(3+) and PAA(5+). N-Acetyl-L-cysteine (NAC) reduced the cytotoxicity and induction of heme oxygenase-1 (HO-1) mRNA in PAO(3+)-exposed cells, while NAC affected neither the cytotoxicity nor the HO-1 mRNA level in PAA(5+)-exposed cells. The effect of NAC may be due to a strong affinity of PAO(3+) to thiol groups because both NAC and GSH inhibited the cellular accumulation of PAO(3+), but PAA(3+) increased tyrosine phosphorylation levels of cellular proteins. These results indicate that the inhibition of protein phosphatases as well as the high affinity to cellular components may confer PAO(3+) the high toxicity.
Resumo:
Sulfate plays an essential role in human growth and development. Here, we characterized the functional properties of the human Na+-sulfate cotransporter (hNaS2), determined its tissue distribution, and identified its gene (SLC13A4) structure. Expression of hNaS2 protein in Xenopus oocytes led to a Na+-dependent transport of sulfate that was inhibited by thiosulfate, phosphate, molybdate. selenate and tungstate, but not by oxalate, citrate, succinate, phenol red or DIDS. Transport kinetics of hNaS2 determined a K, for sulfate of 0.38 mM, suggestive of a high affinity sulfate transporter. Na+ kinetics determined a Hill coefficient of 1.6 +/- 0.6, suggesting a Na: SO42- stoichiometry of 2:1. hNaS2 mRNA was highly expressed in placenta and testis, with intermediate levels in brain and lower levels found in the heart, thymus, and liver. The SLC13A4 gene contains 16 exons, spanning over 47 kb in length. Its 5'-flanking region contains CAAT- and GC-box motifs, and a number of putative transcription factor binding sites, including GATA-1, AP-1, and AP-2 consensus sequences. This is the first study to characterize hNaS2 transport kinetics, define its tissue distribution, and resolve its gene (SLC13A4) structure and 5' flanking region. (C) 2004 Elsevier Inc. All rights reserved.