167 resultados para Hidden conditional random field
em University of Queensland eSpace - Australia
Terrain classification based on markov random field texture modeling of SAR and SAR coherency images
Resumo:
Mixture models implemented via the expectation-maximization (EM) algorithm are being increasingly used in a wide range of problems in pattern recognition such as image segmentation. However, the EM algorithm requires considerable computational time in its application to huge data sets such as a three-dimensional magnetic resonance (MR) image of over 10 million voxels. Recently, it was shown that a sparse, incremental version of the EM algorithm could improve its rate of convergence. In this paper, we show how this modified EM algorithm can be speeded up further by adopting a multiresolution kd-tree structure in performing the E-step. The proposed algorithm outperforms some other variants of the EM algorithm for segmenting MR images of the human brain. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
A new conceptual model for soil pore-solid structure is formalized. Soil pore-solid structure is proposed to comprise spatially abutting elements each with a value which is its membership to the fuzzy set ''pore,'' termed porosity. These values have a range between zero (all solid) and unity (all pore). Images are used to represent structures in which the elements are pixels and the value of each is a porosity. Two-dimensional random fields are generated by allocating each pixel a porosity by independently sampling a statistical distribution. These random fields are reorganized into other pore-solid structural types by selecting parent points which have a specified local region of influence. Pixels of larger or smaller porosity are aggregated about the parent points and within the region of interest by controlled swapping of pixels in the image. This creates local regions of homogeneity within the random field. This is similar to the process known as simulated annealing. The resulting structures are characterized using one-and two-dimensional variograms and functions describing their connectivity. A variety of examples of structures created by the model is presented and compared. Extension to three dimensions presents no theoretical difficulties and is currently under development.
Resumo:
Many images consist of two or more 'phases', where a phase is a collection of homogeneous zones. For example, the phases may represent the presence of different sulphides in an ore sample. Frequently, these phases exhibit very little structure, though all connected components of a given phase may be similar in some sense. As a consequence, random set models are commonly used to model such images. The Boolean model and models derived from the Boolean model are often chosen. An alternative approach to modelling such images is to use the excursion sets of random fields to model each phase. In this paper, the properties of excursion sets will be firstly discussed in terms of modelling binary images. Ways of extending these models to multi-phase images will then be explored. A desirable feature of any model is to be able to fit it to data reasonably well. Different methods for fitting random set models based on excursion sets will be presented and some of the difficulties with these methods will be discussed.
Resumo:
We introduce a new second-order method of texture analysis called Adaptive Multi-Scale Grey Level Co-occurrence Matrix (AMSGLCM), based on the well-known Grey Level Co-occurrence Matrix (GLCM) method. The method deviates significantly from GLCM in that features are extracted, not via a fixed 2D weighting function of co-occurrence matrix elements, but by a variable summation of matrix elements in 3D localized neighborhoods. We subsequently present a new methodology for extracting optimized, highly discriminant features from these localized areas using adaptive Gaussian weighting functions. Genetic Algorithm (GA) optimization is used to produce a set of features whose classification worth is evaluated by discriminatory power and feature correlation considerations. We critically appraised the performance of our method and GLCM in pairwise classification of images from visually similar texture classes, captured from Markov Random Field (MRF) synthesized, natural, and biological origins. In these cross-validated classification trials, our method demonstrated significant benefits over GLCM, including increased feature discriminatory power, automatic feature adaptability, and significantly improved classification performance.
Resumo:
Minimum/maximum autocorrelation factor (MAF) is a suitable algorithm for orthogonalization of a vector random field. Orthogonalization avoids the use of multivariate geostatistics during joint stochastic modeling of geological attributes. This manuscript demonstrates in a practical way that computation of MAF is the same as discriminant analysis of the nested structures. Mathematica software is used to illustrate MAF calculations from a linear model of coregionalization (LMC) model. The limitation of two nested structures in the LMC for MAF is also discussed and linked to the effects of anisotropy and support. The analysis elucidates the matrix properties behind the approach and clarifies relationships that may be useful for model-based approaches. (C) 2003 Elsevier Science Ltd. All rights reserved.
Evidence of altered prefrontal-thalamic circuitry in schizophrenia: An optimised diffusion MRI study
Resumo:
MRI diffusion tensor imaging (DTI), optimized for measuring the trace of the diffusion tensor, was used to investigate microstructural changes in the brains of 12 individuals with schizophrenia compared with 12 matched control subjects. To control for the effects of anatomic variation between subject groups, all participants' diffusion images were non-linearly registered to standard anatomical space. Significant statistical differences in mean diffusivity (MD) measures between the two groups were determined on a pixel-by-pixel basis, using Gaussian random field theory. We found significantly elevated MD measures within temporal, parietal and prefrontal cortical regions in the schizophrenia group (P > 0.001), especially within the medial frontal gyrus and anterior cingulate. The dorsal medial and anterior nucleus of the thalamus, including the caudate, also exhibited significantly increased MD in the schizophrenia group (P > 0.001). This study has shown for the first time that MD measures offer an alternative strategy for investigating altered prefrontal-thalamic circuitry in schizophrenia. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
We consider the case of two cavity modes of the electromagnetic field, which are coupled via the action of a parametric amplifier. The fields are allowed to leak from the cavity and homodyne measurement is performed on one of the modes. Because of the correlations between the modes, this leads to a reduction of the variance in a quadrature of the other mode, although no measurement is performed on it directly. We discuss how this relates to the Einstein-Podolky-Rosen Gedankenexperiment.
Resumo:
This paper presents a new approach to the LU decomposition method for the simulation of stationary and ergodic random fields. The approach overcomes the size limitations of LU and is suitable for any size simulation. The proposed approach can facilitate fast updating of generated realizations with new data, when appropriate, without repeating the full simulation process. Based on a novel column partitioning of the L matrix, expressed in terms of successive conditional covariance matrices, the approach presented here demonstrates that LU simulation is equivalent to the successive solution of kriging residual estimates plus random terms. Consequently, it can be used for the LU decomposition of matrices of any size. The simulation approach is termed conditional simulation by successive residuals as at each step, a small set (group) of random variables is simulated with a LU decomposition of a matrix of updated conditional covariance of residuals. The simulated group is then used to estimate residuals without the need to solve large systems of equations.
Resumo:
Despite the success of conventional Sanger sequencing, significant regions of many genomes still present major obstacles to sequencing. Here we propose a novel approach with the potential to alleviate a wide range of sequencing difficulties. The technique involves extracting target DNA sequence from variants generated by introduction of random mutations. The introduction of mutations does not destroy original sequence information, but distributes it amongst multiple variants. Some of these variants lack problematic features of the target and are more amenable to conventional sequencing. The technique has been successfully demonstrated with mutation levels up to an average 18% base substitution and has been used to read previously intractable poly(A), AT-rich and GC-rich motifs.
Resumo:
We present some exact results for the effect of disorder on the critical properties of an anisotropic XY spin chain in a transverse held. The continuum limit of the corresponding fermion model is taken and in various cases results in a Dirac equation with a random mass. Exact analytic techniques can then be used to evaluate the density of states and the localization length. In the presence of disorder the ferromagnetic-paramagnetic or Ising transition of the model is in the same universality class as the random transverse field Ising model solved by Fisher using a real-space renormalization-group decimation technique (RSRGDT). If there is only randomness in the anisotropy of the magnetic exchange then the anisotropy transition (from a ferromagnet in the x direction to a ferromagnet in the y direction) is also in this universality class. However, if there is randomness in the isotropic part of the exchange or in the transverse held then in a nonzero transverse field the anisotropy transition is destroyed by the disorder. We show that in the Griffiths' phase near the Ising transition that the ground-state energy has an essential singularity. The results obtained for the dynamical critical exponent, typical correlation length, and for the temperature dependence of the specific heat near the Ising transition agree with the results of the RSRODT and numerical work. [S0163-1829(99)07125-8].
Resumo:
A mixture model incorporating long-term survivors has been adopted in the field of biostatistics where some individuals may never experience the failure event under study. The surviving fractions may be considered as cured. In most applications, the survival times are assumed to be independent. However, when the survival data are obtained from a multi-centre clinical trial, it is conceived that the environ mental conditions and facilities shared within clinic affects the proportion cured as well as the failure risk for the uncured individuals. It necessitates a long-term survivor mixture model with random effects. In this paper, the long-term survivor mixture model is extended for the analysis of multivariate failure time data using the generalized linear mixed model (GLMM) approach. The proposed model is applied to analyse a numerical data set from a multi-centre clinical trial of carcinoma as an illustration. Some simulation experiments are performed to assess the applicability of the model based on the average biases of the estimates formed. Copyright (C) 2001 John Wiley & Sons, Ltd.
Resumo:
A laser, be it an optical laser or an atom laser, is an open quantum system that produces a coherent beam of bosons (photons or atoms, respectively). Far above threshold, the stationary state rho(ss) of the laser mode is a mixture of coherent-field states with random phase, or, equivalently, a Poissonian mixture of number states. This paper answers the question: can descriptions such as these, of rho(ss) as a stationary ensemble of pure states, be physically realized? Here physical realization is as defined previously by us [H. M. Wiseman and J. A. Vaccaro, Phys. Lett. A 250, 241 (1998)]: an ensemble of pure states for a particular system can be physically realized if, without changing the dynamics of the system, an experimenter can (in principle) know at any time that the system is in one of the pure-state members of the ensemble. Such knowledge can be obtained by monitoring the baths to which the system is coupled, provided that coupling is describable by a Markovian master equation. Using a family of master equations for the (atom) laser, we solve for the physically realizable (PR) ensembles. We find that for any finite self-energy chi of the bosons in the laser mode, the coherent-state ensemble is not PR; the closest one can come to it is an ensemble of squeezed states. This is particularly relevant for atom lasers, where the self-energy arising from elastic collisions is expected to be large. By contrast, the number-state ensemble is always PR. As the self-energy chi increases, the states in the PR ensemble closest to the coherent-state ensemble become increasingly squeezed. Nevertheless, there are values of chi for which states with well-defined coherent amplitudes are PR, even though the atom laser is not coherent (in the sense of having a Bose-degenerate output). We discuss the physical significance of this anomaly in terms of conditional coherence (and hence conditional Bose degeneracy).