9 resultados para Heteroskedasticity-based identification
em University of Queensland eSpace - Australia
Resumo:
Radar target identification based on complex natural resonances is sometimes achieved by convolving a linear time-domain filter with a received target signature. The filter is constructed from measured or pre-calculated target resonances. The performance of the target identification procedure is degraded if the difference between the sampling rates of the target signature and the filter is ignored. The problem is investigated for the natural extinction pulse technique (E-pulse) for the case of identifying stick models of aircraft.
Resumo:
Based on morphological features alone, there is considerable difficulty in identifying the 5 most economically damaging weed species of Sporobolus [ viz. S. pyramidalis P. Beauv., S. natalensis ( Steud.) Dur and Schinz, S. fertilis ( Steud.) Clayton, S. africanus (Poir.) Robyns and Tourney, and S. jacquemontii Kunth.] found in Australia. A polymerase chain reaction (PCR)-based random amplified polymorphic DNA ( RAPD) technique was used to create a series of genetic markers that could positively identify the 5 major weeds from the other less damaging weedy and native Sporobolus species. In the initial RAPD pro. ling experiment, using arbitrarily selected primers and involving 12 species of Sporobolus, 12 genetic markers were found that, when used in combination, could consistently identify the 5 weedy species from all others. Of these 12 markers, the most diagnostic were UBC51(490) for S. pyramidalis and S. natalensis; UBC43(310,2000,2100) for S. fertilis and S. africanus; and OPA20(850) and UBC43(470) for S. jacquemontii. Species-specific markers could be found only for S. jacquemontii. In an effort to understand why there was difficulty in obtaining species-specific markers for some of the weedy species, a RAPD data matrix was created using 40 RAPD products. These 40 products amplified by 6 random primers from 45 individuals belonging to 12 species, were then subjected to numerical taxonomy and multivariate system (NTSYS pc version 1.70) analysis. The RAPD similarity matrix generated from the analysis indicated that S. pyramidalis was genetically more similar to S. natalensis than to other species of the 'S. indicus complex'. Similarly, S. jacquemontii was more similar to S. pyramidalis, and S. fertilis was more similar to S. africanus than to other species of the complex. Sporobolus pyramidalis, S. jacquemontii, S. africanus, and S. creber exhibited a low within-species genetic diversity, whereas high genetic diversity was observed within S. natalensis, S. fertilis, S. sessilis, S. elongates, and S. laxus. Cluster analysis placed all of the introduced species ( major and minor weedy species) into one major cluster, with S. pyramidalis and S. natalensis in one distinct subcluster and S. fertilis and S. africanus in another. The native species formed separate clusters in the phenograms. The close genetic similarity of S. pyramidalis to S. natalensis, and S. fertilis to S. africanus may explain the difficulty in obtaining RAPD species-specific markers. The importance of these results will be within the Australian dairy and beef industries and will aid in the development of integrated management strategy for these weeds.
Resumo:
Structural similarity among proteins is reflected in the distribution of hydropathicity along the amino acids in the protein sequence. Similarities in the hydropathy distributions are obvious for homologous proteins within a protein family. They also were observed for proteins with related structures, even when sequence similarities were undetectable. Here we present a novel method that employs the hydropathy distribution in proteins for identification of (sub)families in a set of (homologous) proteins. We represent proteins as points in a generalized hydropathy space, represented by vectors of specifically defined features. The features are derived from hydropathy of the individual amino acids. Projection of this space onto principal axes reveals groups of proteins with related hydropathy distributions. The groups identified correspond well to families of structurally and functionally related proteins. We found that this method accurately identifies protein families in a set of proteins, or subfamilies in a set of homologous proteins. Our results show that protein families can be identified by the analysis of hydropathy distribution, without the need for sequence alignment. (C) 2005 Wiley-Liss, Inc.
Resumo:
Phytophthora diseases cause major losses to agricultural and horticultural production in Australia and worldwide. Most Phytophthora diseases are soilborne and difficult to control, making disease prevention an important component of many disease management strategies. Detection and identification of the causal agent, therefore, is an essential part of effective disease management. This paper describes the development and validation of a DNA-based diagnostic assay that can detect and identify 27 different Phytophthora species. We have designed PCR primers that are specific to the genus Phytophthora. The resulting amplicon after PCR is subjected to digestion by restriction enzymes to yield a specific restriction pattern or fingerprint unique to each species. The restriction patterns are compared with a key comprising restriction patterns of type specimens or representative isolates of 27 different Phytophthora species. A number of fundamental issues, such as genetic diversity within and among species which underpin the development and validation of DNA-based diagnostic assays, are addressed in this paper.