2 resultados para Hemolytic activity

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyclotides are a family of plant proteins that have the unusual combination of head-to-tail backbone cyclization and a cystine knot motif. They are exceptionally stable and show resistance to most chemical, physical, and enzymatic treatments. The structure of tricyclon A, a previously unreported cyclotide, is described here. In this structure, a loop that is disordered in other cyclotides forms a beta sheet that protrudes from the globular core. This study indicates that the cyclotide fold is amenable to the introduction of a range of structural elements without affecting the cystine knot core of the protein, which is essential for the stability of the cyclotides. Tricyclon A does not possess a hydrophobic patch, typical of other cyclotides, and has minimal hemolytic activity, making it suitable for pharmaceutical applications. The 22 kDa precursor protein of tricyclon A was identified and provides clues to the processing of these fascinating miniproteins.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cycloviolacin H4, a new macrocyclic miniprotein comprising 30 amino acid residues, was isolated from the underground parts of the Australian native violet Viola hederaceae. Its sequence, cyclo-(CAESCVWIPCTVTALLGCSCSNNVCYNGIP), was determined by nanospray tandem mass spectrometry and quantitative amino acid analysis. A knotted disuffide arrangement, which was designated as a cyclic cystine knot motif and characteristic to all known cyclotides, is proposed for stabilizing the molecular structure and folding. The cyclotide is classified in the bracelet subfamily of cyclotides due to the absence of a cis-Pro peptide bond in the circular peptide backbone. A model of its three-dimensional structure was derived based on the template of the homologous cyclotide vhr1 (Trabi et al. Plant Cell 2004, 16, 2204-2216). Cycloviolacin H4 exhibits the most potent hemolytic activity in cyclotides reported so far, and this activity correlates with the size of a surface-exposed hydrophobic patch. This work has thus provided insight into the factors that modulate the cytotoxic properties of cyclotides.