9 resultados para Heinimaa, Markus

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous invertebrate species form long lasting symbioses with bacteria (Buchner, 1949; Buchner, 1965). One of the most common of these bacterial symbionts is Wolbachia pipientis, which has been estimated to infect anywhere from 15–75% of all insect species (Werren et al., 1995a; West et al., 1998; Jeyaprakash and Hoy, 2000; Werren and Windsor, 2000) as well as many species of arachnids, terrestrial crustaceans and filarial nematodes (O’Neill et al., 1997a; Bandi et al., 1998). In most arthropod associations, Wolbachia act as reproductive parasites manipulating the reproduction of their hosts to enhance their own vertical transmission. There appears to be little direct fitness cost to the infected host besides the costs arising from the reproductive manipulations. However instances have been reported where Wolbachia can be either deleterious (Min and Benzer, 1997; Bouchon et al., 1998) or beneficial (Girin and Boultreau, 1995; Stolk and Stouthamer, 1995; Wade and Chang, 1995; Vavre et al., 1999b; Dedeine et al., 2001) to their hosts. Wolbachia were first described as intracellular Rickettsia-like organisms (RLOs), infecting the gonad cells of the mosquito, Culex pipiens (Hertig and Wolbach, 1924), and were later named 'Wolbachia pipientis' (Hertig, 1936). It was not until the work of Yen and Barr (Yen and Barr, 1971; Yen and Barr, 1973) that Wolbachia were implicated in causing crossing incompatibilities between different mosquito populations (Laven, 1951; Ghelelovitch, 1952). When polymerase chain reaction (PCR) diagnostics for Wolbachia became available, it became clear that this agent was both extremely widespread and also responsible for a range of different reproductive phenotypes in the different hosts it infected (O’Neill et al., 1992; Rousset et al., 1992; Stouthamer et al., 1993). The most common of these are cytoplasmic incompatibility, inducing parthenogenesis, overriding host sex-determination, and male-killing (O’Neill et al., 1997a). As of the time of this writing, more than 450 different Wolbachia strains with unique gene sequences, different phenotypes, and infecting different hosts have been deposited in GenBank and the Wolbachia host database (http://www.wolbachia.sols. uq.edu.au).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wolbachia are maternally inherited intracellular α-Proteobacteria found in numerous arthropod and filarial nematode species [1, 2 and 3]. They influence the biology of their hosts in many ways. In some cases, they act as obligate mutualists and are required for the normal development and reproduction of the host [4 and 5]. They are best known, however, for the various reproductive parasitism traits that they can generate in infected hosts. These include cytoplasmic incompatibility (CI) between individuals of different infection status, the parthenogenetic production of females, the selective killing of male embryos, and the feminization of genetic males [1 and 2]. Wolbachia infections of Drosophila melanogaster are extremely common in both wild populations and long-term laboratory stocks [6, 7 and 8]. Utilizing the newly completed genome sequence of Wolbachia pipientis wMel [9], we have identified a number of polymorphic markers that can be used to discriminate among five different Wolbachia variants within what was previously thought to be the single clonal infection of D. melanogaster. Analysis of long-term lab stocks together with wild-caught flies indicates that one of these variants has replaced the others globally within the last century. This is the first report of a global replacement of a Wolbachia strain in an insect host species. The sweep is at odds with current theory that cannot explain how Wolbachia can invade this host species given the observed cytoplasmic incompatibility characteristics of Wolbachia infections in D. melanogaster in the field [6].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The endosymbiotic bacterium Wolbachia pipientis infects a wide range of arthropods, in which it induces a variety of reproductive phenotypes, including cytoplasmic incompatibility (CI), parthenogenesis, male killing, and reversal of genetic sex determination. The recent sequencing and annotation of the first Wolbachia genome revealed an unusually high number of genes encoding ankyrin domain (ANK) repeats. These ANK genes are likely to be important in mediating the Wolbachia-host interaction. In this work we determined the distribution and expression of the different ANK genes found in the sequenced Wolbachia wMel genome in nine Wolbachia strains that induce different phenotypic effects in their hosts. A comparison of the ANK genes of wMel and the non-CI-inducing wAu Wolbachia strain revealed significant differences between the strains. This was reflected in sequence variability in shared genes that could result in alterations in the encoded proteins, such as motif deletions, amino acid insertions, and in some cases disruptions due to insertion of transposable elements and premature stops. In addition, one wMel ANK gene, which is part of an operon, was absent in the wAu genome. These variations are likely to affect the affinity, function, and cellular location of the predicted proteins encoded by these genes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report here the construction of a physical and genetic map of the virulent Wolbachia strain, wMelPop. This map was determined by ordering 28 chromosome fragments that resulted from digestion with the restriction endonucleases FseI, ApaI, SmaI, and AscI and were resolved by pulsed-field gel electrophoresis. Southern hybridization was done with 53 Wolbachia-specific genes as probes in order to determine the relative positions of these restriction fragments and use them to serve as markers. Comparison of the resulting map with the whole genome sequence of the closely related benign Wolbachia strain, wMel, shows that the two genomes are largely conserved in gene organization with the exception of a single inversion in the chromosome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study we present a novel automated strategy for predicting infarct evolution, based on MR diffusion and perfusion images acquired in the acute stage of stroke. The validity of this methodology was tested on novel patient data including data acquired from an independent stroke clinic. Regions-of-interest (ROIs) defining the initial diffusion lesion and tissue with abnormal hemodynamic function as defined by the mean transit time (MTT) abnormality were automatically extracted from DWI/PI maps. Quantitative measures of cerebral blood flow (CBF) and volume (CBV) along with ratio measures defined relative to the contralateral hemisphere (r(a)CBF and r(a)CBV) were calculated for the MTT ROIs. A parametric normal classifier algorithm incorporating these measures was used to predict infarct growth. The mean r(a)CBF and r(a)CBV values for eventually infarcted MTT tissue were 0.70 +/-0.19 and 1.20 +/-0.36. For recovered tissue the mean values were 0.99 +/-0.25 and 1.87 +/-0.71, respectively. There was a significant difference between these two regions for both measures (P

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The black flying fox Pteropus alecto is one of four species of flying fox found on the Australian mainland. Little information exists about the specific behaviour of this species, and no framework for the study of its behaviour has yet been constructed. In the study reported here, two P alecto colonies were observed at two day roosts in South East Queensland, Australia, between 1998-2000. Observations focused on solitary and social actions in general and on mother-infant interactions in some detail and led to the construction of an ethogram that defines each action structurally and functionally, describing accompanying vocalisations where appropriate. Diurnal activity patterns of P. alecto throughout the year consisted predominantly of roosting, grooming and sleeping, and involved little social activity. Social interactions were largely restricted to the seasonal contexts of the birthing/rearing period of October to March and the subsequent courtship/mating season of February to April. In all, 74 behavioural units were defined with the aim of facilitating further research and the implementation of effective conservation strategies for the species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Flying foxes are commonly thought of as highly social mammals, yet little is known about the dynamics of their social interactions at a day roost. The aim of the present study was to examine the nature of the seasonal activities of territoriality and courtship amongst wild flying foxes in Australia. Focal observations were conducted at two permanent roosts of black flying foxes Pteropus alecto during periods of peak social interaction in the summers of 1999 and 2000 in urban Brisbane, Queensland. Observations of male territoriality were conducted at dawn and began eight weeks prior to the commencement of mating. The majority of defense bouts (87%) consisted of ritualised pursuit, while 13% of bouts involved physical contact expressed as either wrestling or hooking. One male with an unusually large territory took significantly longer to defend it than other males with less territory to defend. Observations of courtship revealed repetitive courtship sequences, including pre-copulatory approaches by the males, copulation attempts and grooming/resting periods. Thirty-four complete courtship sequences incorporating 135 copulation attempts were recorded over two seasons. Females actively resisted courtship approaches by males, forcing males to display a continuous determination to mate over time where determination can be considered an indicator of 'fitness'. The courtship bout length of females with suckling young was significantly longer ((x) over bar +/- SE; 230.9 +/- 22.16 s) than that of females unencumbered by large pups (158.5 +/- 9.69 s), although the length of copulations within those courtships was not (45.6 +/- 5.19 versus 36.2 +/- 3.43 s).