44 resultados para Height Velocity

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Height, weight, and tissue accrual were determined in 60 male and 53 female adolescents measured annually over six years using standard anthropometry and dual-energy X-ray absorptiometry (DXA). Annual velocities were derived, and the ages and magnitudes of peak height and peak tissue velocities were determined using a cubic spline fit to individual data. Individuals were rank ordered on the basis of sex and age at peak height velocity (PHV) and then divided into quartiles: early (lowest quartile), average (middle two quartiles), and late (highest quartile) maturers. Sex- and maturity-related comparisons in ages and magnitudes of peak height and peak tissue velocities were made. Males reached peak velocities significantly later than females for all tissues and had significantly greater magnitudes at peak. The age at PHV was negatively correlated with the magnitude of PHV in both sexes. At a similar maturity point (age at PHV) there were no differences in weight or fat mass among maturity groups in both sexes. Late maturing males, however, accrued more bone mineral and lean mass and were taller at the age of PHV compared to early maturers. Thus, maturational status (early, average, or late maturity) as indicated by age at PHV is inversely related to the magnitude and late maturers for weight and fat mass in boys and girls. Am. J. Hum. Biol. 13:1-8, 2001. (C) 2001 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and objectives: The greatest increase in bone mineral content occurs during adolescence. The amount of bone accrued may significantly affect bone mineral status in later life. We carried out a longitudinal investigation of the magnitude and timing of peak bone mineral content velocity (PBMCV) in relation to peak height velocity (PHV) and the age at menarche in a group of adolescent girls over a 6-year period. Methods: The 53 girls in this study are a subset of the 115 girls (initially 8 to 16 years) in a g-year longitudinal study of bone mineral accretion. The ages at PBMCV and PHV were determined by using a cubic spline curve fitting procedure. Determinations were based on height (n = 12) and bone (n = 6) measurements over 6 years. Results: The timing of PBMCV and menarche were coincident, preceded approximately 1 year earlier by PHV. Correlation showed a negative relationship between age at menarche and both peak bone mineral accrual (r = -0.42, P

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To investigate the influence of physical activity on bone mineral accrual during the adolescent years, we analyzed 6 years of data from 53 girls and 60 boys. Physical activity, dietary intakes, and anthropometry were measured every 6 months and dual-energy X-ray absorptiometry scans of the total body (TB), lumbar spine (LS), and proximal femur (Hologic 2000, array mode) were collected annually. Distance and velocity curves for height and bone mineral content (BMC) were fitted for each child at several skeletal sites using a cubic spline procedure, from which ages at peak height velocity (PHV) and peak BMC velocity (PBMCV) were identified. A mean age- and gender-specific standardized activity (Z) score was calculated for each subject based on multiple yearly activity assessments collected up until age of PHV. This score was used to identify active (top quartile), average (middle 2 quartiles), or inactive (bottom quartile) groups. Two-way analysis of covariance, with height and weight at PHV controlled for, demonstrated significant physical activity and gender main effects (but no interaction) for PBMCV, for BMC accrued for 2 years around peak velocity, and for BMC at 1 year post-PBMCV for the TB and femoral neck and for physical activity but not gender at the LS (all p < 0.05). Controlling for maturational and size differences between groups, we noted a 9% and 17% greater TB BMC for active boys and girls, respectively, over their inactive peers 1 year after the age of PBMCV. We also estimated that, on average, 26% of adult TB bone mineral was accrued during the 2 years around PBMCV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The primary purpose of this study was to estimate the magnitude and variability of peak calcium accretion rates in the skeletons of healthy white adolescents. Total-body bone mineral content (BMC) was measured annually on six occasions by dual-energy X-ray absorptiometry (DXA; Hologic 2000, array mode), a BMC velocity curve was generated for each child by a cubic spline fit, and peak accretion rates were determined. Anthropometric measures were collected every 6 months and a 24-h dietary recall was recorded two to three times per year. Of the 113 boys and 115 girls initially enrolled in the study, 60 boys and 53 girls who had peak height velocity (PHV) and peak BMC velocity values were used in this longitudinal analysis. When the individual BR IC velocity curves were aligned on the age of peak bone mineral velocity, the resulting mean peak bone mineral accrual rate was 407 g/year for boys (SD, 92 g/year; range, 226-651 g/year) and 322 g/year for girls (SD, 66 g/year; range, 194-520 g/year). Using 32.2% as the fraction of calcium in bone mineral, as determined by neutron activation analysis (Ellis et al., J Bone Miner Res 1996;11:843-848), these corresponded to peak calcium accretion rates of 359 mg/day for boys (81 mg/day; 199-574 mg/day) and 284 mg/day for girls (58 mg/day; 171-459 mg/day). These longitudinal results are 27-34% higher than our previous cross-sectional analysis in which we reported mean values of 282 mg/day for boys and 212 mg/day for girls (Martin et al., Am J Clin Nutr 1997;66:611-615). Mean age of peak calcium accretion was 14.0 years for the boys (1.0 years; 12.0-15.9 years), and 12.5 years for the girls (0.9 years; 10.5-14.6 years). Dietary calcium intake, determined as the mean of all assessments up to the age of peak accretion was 1140 mg/day (SD, 392 mg/day) for boys and 1113 mg/day (SD, 378 mg/day) for girls. We estimate that 26% of adult calcium is laid down during the 2 adolescent years of peak skeletal growth. This period of rapid growth requires high accretion rates of calcium, achieved in part by increased retention efficiency of dietary calcium.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To investigate whether there are gender differences in the bone geometry of the proximal femur during the adolescent years we used an interactive computer program ?Hip Strength Analysis? developed by Beck and associates (Beck et al., Invest Radiol. 1990,25:6-18.) to derive femoral neck geometry parameters from DXA bone scans (Hologic 2000, array mode). We analyzed a longitudinal data-set collected on 70 boys and 68 girls over a seven year period. Distance and velocity curves for height were fitted for each child utilizing a cubic spline procedure and the age of peak height velocity (PHV) was determined. To control for maturational differences between children of the same chronological age and between boys and girls, section modulus (Z) an index of bending strength, cross sectional area of bone (CSA), sub-periosteal width (SPW), and BMD values at the neck and shaft of the proximal femur were determined for points on each individual?s curve at the age of PHV and one and two years on either side of peak. To control for size differences, height and weight were introduced as co-variates in the two-way analyses of variance looking at gender over time measured at the maturational age points (-2, -1, age of PHV, +1, +2). The following figure presents the results of the analyses on two variables, BMD and Z at neck and shaft regions:After the age of peak linear growth (PHV), independent of body size, there was a gender difference in BMD at the shaft but not at the neck. Section modulus at both sites indicated that male bones became significantly stronger after PHV. Underlying these maturational changes, male bones became wider (SPW) after PHV in both the neck and shaft and enclosed more material (CSA) at all maturational age points at both regions. These results call into question the emphasis on using BMD as a measure of skeletal integrity in growing children

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To investigate bone mineral accretion in growing children, the Saskatchewan Pediatric Bone Mineral Accrual Study was initiated in 1991. The study involves the collection of dietary and physical activity information along with anthropometric growth and maturity measurements every 6 months and dual-energy X-ray absorptiometer (DXA) bone scans of the whole body, AP lumbar spine and proximal femur taken annually, The study has now finished its 6th year and 68 males and 72 females from an original sample of 228 elementary schoolchildren are still involved, To investigate how bone mineral at clinically important sites proceeds in relation to maturation we developed distance and velocity growth curves for height and bone mineral content (BMC) for the AP lumbar spine, the femoral neck and the whole body, In both boys and girls, over 35% of total body and AP spine bone mineral and over 27% of the bone mineral at the femoral neck was laid down during the 4-year adolescent period surrounding peak linear growth velocity. The clinical significance of these values can be appreciated by consideration of the fact that as much bone mineral will be laid down during these 4 adolescent growing years as most people will lose during all of adult life.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We measured bone mineral content (BMC) and estimated calcium accretion in children to provide insight into dietary calcium requirements during growth. Anthropometric measurements were done semiannually and whole-body BMC was measured annually by dual-energy X-ray absorptiometry for 4 y in 228 children (471 scans in 113 boys and 507 scans in 115,girls). Mean values for BMC, skeletal area, and height were calculated for 1-y age groups from 9.5 to 19.5 y of age. Cross-sectional analysis of the pooled data gave peak height velocity and peak BMC velocity (PBMCV) and the ages at which these occurred (13.3 y in boys and 11.4 y in girls). PBMCV did not peak until 1.2 y after peak height velocity in boys and 1.6 y after peak height velocity in girls. Within 3 y on either side of PBMCV, boys had consistently higher BMC and BMC velocity compared with girls and the discrepancy increased steadily through puberty. Three years before PBMCV, BMC Values in girls were 69% of those in boys; 3 y after peak height velocity this proportion fell to 51%. PBMCV was 320 g/y in boys and 240 g/y in girls. Under the assumption that bone mineral is 32.2% calcium, these values corresponded to a daily calcium retention of 282 mg in boys and 212 mg in girls. Individual Values could be much greater. In one boy in a group of six subjects for whom there were enough data for individual analysis through puberty, PBMCV was 555 g Ca/y or 490 mg Ca/d. Such high skeletal demands for calcium require large dietary calcium intakes and such requirements may not be met immediately in some children.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The aims of this study are two-fold: first, to analyze intraindividual allometric development of aerobic power of 73 boys followed at annual intervals from 8 to 16 yr, and second, to relate scaled aerobic power with level of habitual physical activity and biological maturity status. Methods: Peak (V) over dot O-2 (treadmill), height, and body mass were measured. Biological maturity was based on age at peak height velocity (PHV) and level of physical activity was based on five assessments between 11 and 15 yr and at 17 yr. Interindividual and intraindividual allometric coefficients were calculated. Multilevel modeling was applied to verify if maturity status and activity explain a significant proportion of peak (V) over dot O-2 after controlling for other explanatory characteristics. Results: At most age levels, interindividual allometry coefficients for body mass exceed k = 0.750. Intraindividual coefficients of peak (V) over dot O-2 by body mass vary widely and range from k' = 0,555 to k' = 1,178. Late maturing boys have smaller k' coefficients than early maturing boys. Conclusion: Peak (V) over dot O-2 is largely explained by body mass, but activity level and its interaction with maturity status contribute independently to peak (V) over dot O-2 even after adjusting for body mass.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: The range of variability between individuals of the same chronological age (CA) in somatic and biological maturity is large and especially accentuated around the adolescent growth spurt. Maturity assessment is an important consideration when dealing with adolescents, from both a research perspective and youth sports stratification. A noninvasive, practical method predicting years from peak height velocity (a maturity offset value) by using anthropometric variables is developed in one sample and cross-validated in two different samples. Methods: Gender specific multiple regression equations were calculated on a sample of 152 Canadian children aged 8-16 yr (79 boys; 73 girls) who were followed through adolescence from 1991 to 1997, The equations included three somatic dimensions (height, sitting height, and leg length), CA, and their interactions. The equations were cross-validated on a Combined sample of Canadian (71 boys, 40 girls measured from 1964 through 1973) and Flemish children (50 boys, 48 girls measured from 1985 through 1999). Results: The coefficient of determination (R2) for the boys' model was 0.92 and for the girls' model 0.91 the SEEs were 0.49 and 0.50, respectively, Mean difference between actual and predicted maturity offset for the verification samples was 0.24 (SD 0.65) yr in boys and 0,001 (SD 0.68) yr in girls. Conclusion: Although the cross-validation meets statistical standards or acceptance, caution 1, warranted with regard to implementation. It is recommended that maturity offset be considered as a categorical rather than a continuous assessment. Nevertheless, the equations presented are a reliable, noninvasive and a practical solution for the measure of biological maturity for matching adolescent athletes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report a 5 year old girl with postnatal overgrowth (height velocity >97th centile), hyperinsulinaemia, and increased insulin-like growth factor 1 for age, without evidence of bioactive or immunoreactive growth hormone excess or pituitary abnormality. Although her overgrowth may be a result of hyperinsulinism, her serum contains a factor (neither insulin nor IGF-1) which is able to stimulate the proliferation of lymphocyte precursors, and this could also account for the overgrowth. Over the course of two years observation she has developed acanthosis nigricans and diabetes mellitus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Although early in life there is little discernible difference in bone mass between boys and girls, at puberty sex differences are observed. It is uncertain if these differences represent differences in bone mass or just differences in anthropometric dimensions. Aim: The study aimed to identify whether sex independently affects bone mineral content (BMC) accrual in growing boys and girls. Three sites are investigated: total body (TB), femoral neck (FN) and lumbar spine (LS). Subjects and methods: 85 boys and 67 girls were assessed annually for seven consecutive years. BMC was assessed by dual energy X-ray absorptiometry (DXA). Biological age was defined as years from age at peak height velocity (PHV). Data were analysed using a hierarchical (random effects) modelling approach. Results: When biological age, body size and body composition were controlled, boys had statistically significantly higher TB and FN BMC at all maturity levels (p < 0.05). No independent sex differences were found at the LS (p > 0.05). Conclusion: Although a statistical significant sex effect is observed, it is less than the error of the measurement, and thus sex difference are debatable. In general, sex difference are explained by anthropometric difference

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the development of fatness, as indexed by skinfold thickness, in healthy Caucasian children and adolescents residing in the same location in Canada in the 1960s and the 1990s. The data comes from two longitudinal studies, conducted approximately 30 years apart, of children aged 8-16 years. The first study (1964-1973) annually measured 207 males and 140 females. The second investigation (1991-1997) repeatedly measured 113 males and 115 females. Identical measurement tools and protocols were used for height, body mass, and skinfolds. Maturational age was estimated as a measure in years from age of peak height velocity. Males from the second investigation matured significantly (P < 0.05) earlier. Multilevel regression modeling was utilized to determine developmental curves for the individuals within the two populations. When differences in height, body mass, and maturity were controlled, skinfold thicknesses of the males and females in the second study were significantly greater (P < 0.05) than age- and sex-matched peers in the first study. This was not seen in models of the BMI. The results suggest that when maturity and size were controlled, the fatness of children and adolescents increased over 30 years. (C) 2002 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of bone mass during the growing years is an important determinant for risk of osteoporosis in later life. Adequate dietary intake during the growth period may be critical in reaching bone growth potential. The Saskatchewan Bone Mineral Accrual Study (BMAS) is a longitudinal study of bone growth in Caucasian children. We have calculated the times of maximal peak bone mineral content (BMC) velocity to be 14.0 +/- 1.0 y in boys and 12.5 +/- 0.9 y in girls; bone growth is maximal similar to6 mo after peak height velocity. In the 2 y of peak skeletal growth, adolescents accumulate over 25% of adult bone. BMAS data may provide biological data on calcium requirements through application of calcium accrual values to factorial calculations of requirement. As well, our data are beginning to reveal how dietary patterns may influence attainment of bone mass during the adolescent growth spurt. Replacing milk intake by soft drinks appears to be detrimental to bone gain by girls, but not boys. Fruit and vegetable intake, providing alkalinity to bones and/or acting as a marker of a healthy diet, appears to influence BMC in adolescent girls, but not boys. The reason why these dietary factors appear to be more influential in girls than in boys may be that BMAS girls are consuming less than their requirement for calcium, while boys are above their threshold. Specific dietary and nutrient recommendations for adolescents are needed in order to ensure optimal bone growth and consolidation during this important life stage.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mechanostat theory postulates that developmental changes in bone strength are secondary to the increasing loads imposed by larger muscle forces. Therefore, the increase in muscle strength should precede the increase in bone strength. We tested this prediction using densitometric surrogate measures of muscle force (lean body mass, LBM) and bone strength (bone mineral content, BMC) in a study on 70 boys and 68 girls who were longitudinally examined during pubertal development. On the level of the total body, the peak in LBM accrual preceded the peak in BMC accretion by an average of 0.51 years in girls and by 0.36 years in boys. In the arms, the maximal increase in LBM was followed by arm peak BMC accrual after an interval of 0.71 years in girls and 0.63 years in boys. In the lower extremities, the maximal increase in LBM was followed by peak BMC accrual after an interval of 0.22 years in girls and 0.48 years in boys. A multiple regression model revealed that total body peak LBM velocity, but not peak height velocity and sex, was independently associated with total body peak BMC velocity (r(2) = 0.50; P < 0.001). Similarly, arm and leg peak LBM velocity, but not peak height velocity and sex, were independently associated with arm and leg peak BMC velocity, respectively (r(2) = 0.61 for arms, r(2) = 0.41 for legs; P < 0.001 in both cases). These results are compatible with the view that bone development is driven by muscle development, although the data do not exclude the hypothesis that the two processes are independently determined by genetic mechanisms. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Before puberty, there are only small sex differences in body shape and composition. During adolescence, sexual dimorphism in bone, lean, and fat mass increases, giving rise to the greater size and strength of the male skeleton. The question remains as to whether there are sex differences in bone strength or simply differences in anthropometric dimensions. To test this, we applied hip structural analysis (HSA) to derive strength and geometric indices of the femoral neck using bone densitometry scans (DXA) from a 6-year longitudinal study in Canadian children. Seventy boys and sixty-eight girls were assessed annually for 6 consecutive years. At the femoral neck, cross-sectional area (CSA, an index of axial strength), subperiosteal width (SPW), and section modulus (Z, an index of bending strength) were determined, and data were analyzed using a hierarchical (random effects) modeling approach. Biological age (BA) was defined as years from age at peak height velocity (PHV). When BA, stature, and total-body lean mass (TB lean) were controlled, boys had significantly higher Z than girls at all maturity levels (P < 0.05). Controlling height and TB lean for CSA demonstrated a significant independent sex by BA interaction effect (P < 0.05). That is, CSA was greater in boys before PHV but higher in girls after PHV The coefficients contributing the greatest proportion to the prediction of CSA, SPW, and Z were height and lean mass. Because the significant sex difference in Z was relatively small and close to the error of measurement, we questioned its biological significance. The sex difference in bending strength was therefore explained by anthropometric differences. In contrast to recent hypotheses, we conclude that the CSA-lean ratio does not imply altered mechanosensitivity in girls because bending dominates loading at the neck, and the Z-lean ratio remained similar between the sexes throughout adolescence. That is, despite the greater CSA in girls, the bone is strategically placed to resist bending; hence, the bones of girls and boys adapt to mechanical challenges in a similar way. (C) 2004 Elsevier Inc. All rights reserved.