7 resultados para Heat exchanger network (HEN)

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic goal-driven top-down modelling methodology is proposed that is capable of developing a multiscale model of a process system for given diagnostic purposes. The diagnostic goal-set and the symptoms are extracted from HAZOP analysis results, where the possible actions to be performed in a fault situation are also described. The multiscale dynamic model is realized in the form of a hierarchical coloured Petri net by using a novel substitution place-transition pair. Multiscale simulation that focuses automatically on the fault areas is used to predict the effect of the proposed preventive actions. The notions and procedures are illustrated on some simple case studies including a heat exchanger network and a more complex wet granulation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we examine the effect of contact angle (or surface wettability) on the convective heat transfer coefficient in microchannels. Slip flow, where the fluid velocity at the wall is non-zero, is most likely to occur in microchannels due to its dependence on shear rate or wall shear stress. We show analytically that for a constant pressure drop, the presence of slip increases the Nusselt number. In a microchannel heat exchanger we modified the surface wettability from a contact angle of 20 degrees-120 degrees using thin film coating technology. Apparent slip flow is implied from pressure and flow rate measurements with a departure from classical laminar friction coefficients above a critical shear rate of approximately 10,000 s(-1). The magnitude of this departure is dependant on the contact angle with higher contact angles surfaces exhibiting larger pressure drop decreases. Similarly, the non-dimensional heat flux is found to decrease relative to laminar non-slip theory, and this decrease is also a function of the contact angle. Depending on the contact angle and the wall shear rate, variations in the heat transfer rate exceeding 10% can be expected. Thus the contact angle is an important consideration in the design of micro, and even more so, nano heat exchangers. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Minimal representations are known to have no redundant elements, and are therefore of great importance. Based on the notions of performance and size indices and measures for process systems, the paper proposes conditions for a process model being minimal in a set of functionally equivalent models with respect to a size norm. Generalized versions of known procedures to obtain minimal process models for a given modelling goal, model reduction based on sensitivity analysis and incremental model building are proposed and discussed. The notions and procedures are illustrated and compared on a simple example, that of a simple nonlinear fermentation process with different modelling goals and on a case study of a heat exchanger modelling. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel apparatus, high-pressure/high-temperature nickel flow loop, was constructed to study the effect of the flow on the rate of erosion-corrosion of mild steel in hot caustic. It has been successfully used to measure the corrosion rate of 1020 steel in 2.75 M NaOH solution at a temperature of 160 degrees C and velocities of 0.32 and 2.5 m/s. In situ electrochemical methods were used to measure the corrosion rate such as the potentiodynamic sweep, the polarization resistance method, and electrochemical impedance spectroscopy (EIS). Also used were the weight-loss method and scanning electron microscopy (SEM). Eight electrodes/coupons were used to monitor the metal loss rate, four were placed at the low velocity section, while the other four were placed in the high velocity section. The first three coupons in each section were placed within the disturbed flow region, while the fourth was placed in a fully developed flow region. The corrosion rate of the coupons in the high velocity section was generally higher than that of the coupons in the low velocity section. One coupon in the disturbed flow region had a significantly higher corrosion rate than the others. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Corrosion rates of 1020 steel in 2.75 M NaOH solution at a temperature of 160 degrees C and velocities of 0.32 and 2.5 m/s were studied. The focus was on the effect of the acid cleaning which was performed by using strong, inhibited sulphuric acid in between the exposures to caustic. In situ electrochemical methods were used to measure the corrosion rate such as the potentiodynamic sweep and the polarization resistance method. Also used were the weight-loss method and scanning electron microscopy (SEM). Eight electrodes/coupons were used to monitor the metal loss rate, four were placed at the low velocity section, while the other four were placed in the high velocity section of a high temperature flow. The first three coupons in each section were placed within the disturbed flow region, while the fourth was placed in a fully developed flow region. During the exposure of mild steel to the inhibited acid, following the first caustic period, the corrosion rate increased significantly to between 3 and 10mm/y with a few electrodes experiencing as high as 50 mm/y. The second caustic period following the acidic period typically started with very high corrosion rates (20-80 mm/y). The length of this corrosion period was typically 2-3 h with a few exceptions when the high corrosion period lasted 7-10 h. Following the very high corrosion rates experienced at the beginning of the second caustic period, the corrosion rates were reduced sharply (as the corrosion potential increased) to nearly the same levels as those observed during the passive part of the first caustic period. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational fluid dynamics was used to search for the links between the observed pattern of attack seen in a bauxite refinery's heat exchanger headers and the hydrodynamics inside the header. Validation of the computational fluid dynamics results was done by comparing then with flow parameters measured in a 1:5 scale model of the first pass header in the laboratory. Computational fluid dynamics simulations were used to establish hydrodynamic similarity between the 1:5 scale and full scale models of the first pass header. It was found that the erosion-corrosion damage seen at the tubesheet of the first pass header was a consequence of increased levels of turbulence at the tubesheet caused by a rapidly turning flow. A prismatic flow corrections device introduced in the past helped in rectifying the problem at the tubesheet but exaggerated the erosion-corrosion problem at the first pass header shell. A number of alternative flow correction devices were tested using computational fluid dynamics. Axial ribbing in the first pass header and an inlet flow diffuser have shown the best performance and were recommended for implementation. Computational fluid dynamics simulations have revealed a smooth orderly low turbulence flow pattern in the second, third and fourth pass as well as the exit headers where no erosion-corrosion was seen in practice. This study has confirmed that near-wall turbulence intensity, which can be successfully predicted by using computational fluid dynamics, is a good hydrodynamic predictor of erosion-corrosion damage in complex geometries. (c) 2006 Published by Elsevier Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To compare the incidence of ventilator-associated pneumonia (VAP) in patients ventilated in intensive care by means of circuits humidified with a hygroscopic heat-and-moisture exchanger with a bacterial viral filter (HME) or hot-water humidification with a heater wire in both inspiratory and expiratory circuit limbs (DHW) or the inspiratory limb only (SHW). Design: A prospective, randomized trial. Setting: A metropolitan teaching hospital's general intensive care unit. Patients: Three hundred eighty-one patients requiring a minimum period of mechanical ventilation of 48 hrs. Interventions: Patients were randomized to humidification with use of an HME (n = 190), SHW (n = 94), or DHW (n = 97). Measurements and Main Results. Study end points were VAP diagnosed on the basis of Clinical Pulmonary Infection Score (CPIS) (1), HME resistance after 24 hrs of use, endotracheal tube resistance, and HME use per patient. VAP occurred with similar frequency in all groups (13%, HME; 14%, DHW; 10%, SHW; p = 0.61) and was predicted only by current smoking (adjusted odds ratio [AOR], 2.1; 95% confidence interval [CI], 1.1-3.9; p =.03) and ventilation days (AOR, 1.05; 95% Cl, 1.0-1.2; p =.001); VAP was less likely for patients with an admission diagnosis of pneumonia (AOR, 0.40; 95% Cl, 0.4-0.2; p =.04). HME resistance after 24 hrs of use measured at a gas flow of 50 L/min was 0.9 cm H2O (0.4-2.9). Endotracheal tube resistance was similar for all three groups (16-19 cm H2O min/L; p =.2), as were suction frequency, secretion thickness, and blood on suctioning (p =.32, p =.06, and p =.34, respectively). The HME use per patient per day was 1.13. Conclusions: Humidification technique does not influence either VAP incidence or secretion characteristics, but HMEs may have air-flow resistance higher than manufacturer specifications after 24 hrs of use.