2 resultados para Hash
em University of Queensland eSpace - Australia
Resumo:
Minimal perfect hash functions are used for memory efficient storage and fast retrieval of items from static sets. We present an infinite family of efficient and practical algorithms for generating order preserving minimal perfect hash functions. We show that almost all members of the family construct space and time optimal order preserving minimal perfect hash functions, and we identify the one with minimum constants. Members of the family generate a hash function in two steps. First a special kind of function into an r-graph is computed probabilistically. Then this function is refined deterministically to a minimal perfect hash function. We give strong theoretical evidence that the first step uses linear random time. The second step runs in linear deterministic time. The family not only has theoretical importance, but also offers the fastest known method for generating perfect hash functions.
Resumo:
The paper provides evidence that spatial indexing structures offer faster resolution of Formal Concept Analysis queries than B-Tree/Hash methods. We show that many Formal Concept Analysis operations, computing the contingent and extent sizes as well as listing the matching objects, enjoy improved performance with the use of spatial indexing structures such as the RD-Tree. Speed improvements can vary up to eighty times faster depending on the data and query. The motivation for our study is the application of Formal Concept Analysis to Semantic File Systems. In such applications millions of formal objects must be dealt with. It has been found that spatial indexing also provides an effective indexing technique for more general purpose applications requiring scalability in Formal Concept Analysis systems. The coverage and benchmarking are presented with general applications in mind.