26 resultados para Harmful algal bloom - British Columbia - Muchalat Inlet
em University of Queensland eSpace - Australia
Resumo:
We investigated long-term spatial variability in a number of Harmful Algal Blooms (HABs) in the northeast Atlantic and North Sea using data from the Continuous Plankton Recorder. Over the last four decades. some dinoflagellate taxa showed pronounced variation in the south and east of the North Sea, with the most significant increases being restricted to the adjacent waters off Norway. There was also a general decrease along the eastern coast of the United Kingdom. The most prominent feature in the interannual bloom frequencies over the last four decades was the anomalously high values recorded in the late 1980s in the northern and central North Sea areas. The only mesoscale area in the northeast Atlantic to show a significant increase in bloom formation over the last decade was the Norwegian coastal region. The changing spatial patterns of HAB taxa and the frequency of bloom formation are discussed in relation to regional climate change, in particular, changes in temperature, salinity, and the North Atlantic Oscillation (NAO). Areas highly vulnerable to the effects of regional climate change on HABs are Norwegian coastal waters and the Skagerrak. Other vulnerable areas include Danish coastal waters, and to a lesser extent, the German and Dutch Bight and the northern Irish Sea. Quite apart from eutrophication, our results give a preview of what might happen to certain HAB genera under changing climatic conditions in temperate environments and their responses to variability of climate oscillations Such as the NAO.
Resumo:
The late Early to early Middle Eocene Okanagan Highlands fossil sites, spanning -1000 km north-south (northeastern Washington State, southern British Columbia) provide an opportunity to reconstruct biotic communities across a broad upland landscape during the warmest part of the Cenozoic. Plant taxa from these fossil sites are characteristic of the modern eastern North American deciduous forest zone, principally the mixed mesophytic forest, but also include extinct taxa, taxa known only from eastern Asian mesothermal forests, and a small number of taxa restricted to the present-day North American west coast coniferous biome. In this preliminary report, paleoclimates and forest types are reconstructed using collections from Republic in Washington State, USA., and Princeton, Quilchena, Falkland, McAbee, Hat Creek, Horsefly, and Driftwood Canyon in British Columbia, Canada. Both leaf margin analysis (LMA) and quantitative bioclimatic analysis of identified nearest living relatives of megaflora indicated upper microthermal to lower mesothermal moist environments (MAT -10-15 degrees C, CMMT > 0 degrees C, MAP > 100 cm/year). Some taxa common to most sites suggest cool conditions (e.g., Abies, other Pinaceae; Alnus, other Betulaceae). However, all floras contain a substantive broadleaf deciduous element (e.g., Fagaceae, Juglandaceae) and conifers (e.g., Metasequoia) with the bioclimatic analysis yielding slightly higher MAT than LMA. Thermophilic (principally mesothermal) taxa include various insects, the aquatic fern Azolla, palms, the banana relative Ensete, taxodiaceous conifers, Eucommia and Gordonia, taxa which may have occurred near their climatic limits. The mixture of thermophilic and temperate insect and plant taxa indicates low-temperature seasonality (i.e., highly equable climate).
Resumo:
Alteration zones at the gold-rich Bajo de la Alumbrera porphyry copper deposit in northwestern Argentina are centered on several porphyritic intrusions. They are zoned from a central copper-iron sulfide and gold-mineralized potassic (biotite-K-feldspar +/- quartz) core outward to propylitic (chlorite-illite-epidote-calcite) assemblages. A mineralized intermediate argillic alteration assemblage (chlorite-illite +/- pyrite) has overprinted the potassic alteration zone across the top and sides of the deposit and is itself zoned outward into phyllic (quartzinuscovite-illite +/- pyrite) alteration. This study contributes new data to previously reported delta(18)O and delta D compositions of fluids responsible for the alteration at Bajo de la Alumbrera, and the data are used to infer likely ore-forming processes. Measured and calculated delta(18)O and delta D values of fluids (+8.3 to +10.2 and -33 to -81 parts per thousand, respectively) confirm a primary magmatic origin for the earliest potassic alteration phase. Lower temperature potassic alteration formed from magmatic fluids with lower delta D values (down to -123 parts per thousand). These depleted compositions are distinct from meteoric water and consistent with degassing and volatile exsolution of magmatic fluids derived from an underlying magma. Variability in the calculated composition of fluid associated with potassic alteration is explained in terms of phase separation (or boiling). if copper-iron sulfide deposition occurred during cooling (as proposed elsewhere), this cooling was largely a result of phase separation. Magmatic water was directly involved in the formation of overprinting intermediate argillic alteration assemblages at Bajo de la Alumbrera. Calculated delta(18)O and delta D values of fluids associated with this alteration range from +4.8 to +8.1 and -31 to -71 per mil, respectively Compositions determined for fluids associated with phyllic alteration (-0.8 to +10.2 and -31 to -119 parts per thousand) overlap with the values determined for the intermediate argillic alteration. We infer that phyllic alteration assemblages developed during two stages; the first was a high-temperature (400 degrees-300 degrees C) stage with D-depleted water (delta D = -66 to -119 parts per thousand). This compositional range may have resulted from magma degassing and/or the injection of new magmatic water into a compositionally evolved hydrothermal system. The isotopic variations also can be explained by increased fluid-rock interaction. The second stage of phyllic alteration occurred at a lower temperature (similar to 200 degrees C), and variations in the modeled isotopic compositions imply mixing of magmatic and meteoric waters. Ore deposition that occurred late in the evolution of the hydrothermal system was probably associated with further cooling of the magmatic fluid, in part caused by fluid-rock interaction and phase separation. Changing pH and/or oxygen fuoracity may have caused additional ore deposition. The ingress of meteoric water appears to postdate the bulk of mineralization and occurred as the system at Bajo de la Alumbrera waned.
Resumo:
Harmful algal blooms (HABs) have increased in abundance and severity in recent decades. Whereas the implications for human impacts and intoxication resulting from blooms have been extensively studied, the ecological implications of these microalgae are less well understood. Many HAB species produce biologically active, secondary metabolites and the fate of these toxins through the foodweb is generally not well understood unless it culminates in extensive fish mortalities or human poisonings. This review focusses on one HAB species, the cyanobacterium Lyngbya majuscula, and presents a hypothetical role for its involvement in fibro-papillornatosis (FP), a neoplastic disease of marine turtles. FP is expressed as benign tumours that grow both internally and externally on marine turtles, preventing vision, movement and organ function. The aetiology of FP is currently not conclusively understood, but virus material has been associated with tumours and previous studies have suggested a role for naturally produced tumour promoters. In this review, we present a hypothesis regarding the involvement of L. majuscula in FP, either through direct intoxication and action of tumour-promoting compounds or indirectly by causing seagrass loss and compromised immune function, thus leaving the turtles more susceptible to disease.
Resumo:
We studied habitat selection and breeding success in marked populations of a protected seabird (family Alcidae), the marbled murrelet (Brachyramphus marmoratus), in a relatively intact and a heavily logged old-growth forest landscape in south-western Canada. Murrelets used old-growth fragments either proportionately to their size frequency distribution (intact) or they tended to nest in disproportionately smaller fragments (logged). Multiple regression modelling showed that murrelet distribution could be explained by proximity of nests to landscape features producing biotic and abiotic edge effects. Streams, steeper slopes and lower elevations were selected in both landscapes, probably due to good nesting habitat conditions and easier access to nest sites. In the logged landscape, the murrelets nested closer to recent clearcuts than would be expected. Proximity to the ocean was favoured in the intact area. The models of habitat selection had satisfactory discriminatory ability in both landscapes. Breeding success (probability of nest survival to the middle of the chick rearing period), inferred from nest attendance patterns by radio-tagged parents, was modelled in the logged landscape. Survivorship was greater in areas with recent clearcuts and lower in areas with much regrowth, i.e. it was positively correlated with recent habitat fragmentation. We conclude that marbled murrelets can successfully breed in old-growth forests fragmented by logging.
Resumo:
Environmental conditions influence the breeding and migratory patterns of many avian species and may have particularly dramatic effects on long-distance migrants that breed at northern latitudes. Environment, however, is only one of the ecological variables affecting avian phenology, and recent work shows that migration tactics may be strongly affected by changes in predator populations. We used long-term data from 1978 to 2000 to examine the interactions between snowmelt in western Alaska in relation to the breeding or migration phenologies of small shorebirds and their raptor predators. Although the sandpipers' time of arrival at Alaskan breeding sites corresponded with mean snowmelt, late snowmelts did delay breeding. These delays, however, did not persist to southward migration through British Columbia, likely due to the birds' ability to compensate for variance in the length of the breeding season. Raptor phenology at an early stopover site in British Columbia was strongly related to snowmelt, so that in years of early snowmelt falcons appeared earlier during the sandpipers' southbound migration. These differential effects indicate that earlier snowmelt due to climate change may alter the ecological dynamics of the predator-prey system.
Resumo:
Since 2002, the usually uncommon endemic filamentous brown alga Hincksia sordida (Harvey) Silva (Ectocarpales, Phaeophyta) has formed nuisance blooms annually during spring/early summer at Main Beach, Noosa on the subtropical east Australian coast. The Hincksia bloom coincides with the normally intensive recreational use of the popular bathing beach by the local population and tourists. The alga forms dense accumulations in the surf zone at Main Beach, giving the seawater a distinct brown coloration and deterring swimmers from entering the water. Decomposing algae stranded by receding tides emit a nauseating sulphurous stench which hangs over the beach. The stranded algal biomass is removed from the beach by bulldozers. During blooms, the usually crowded Main Beach is deserted, bathers preferring to use the many unaffected beaches on the Sunshine Coast to the south of Main Beach. The bloom worsens with north-easterly winds and is cleared from Noosa by south easterly winds, observations which have prompted the untenable proposal by local authorities that the bloom is forming offshore of Fraser Island in the South Pacific Ocean. The Noosa River estuarine system/Laguna Bay is the more probable source of the bloom and the nutrient inputs into this system must be substantial to generate the high bloom biomass. Current mitigation procedures of removing the blooming alga off the beach with bulldozers treat the symptom, not the cause and are proving ineffective. Environmental management must be based on science and the Noosa bloom would benefit greatly from the accurate ecological data on which to base management options. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
It has been established that large numbers of certain trees can survive in the beds of rivers of northeastern Australia where a strongly seasonal distribution of precipitation causes extreme variations in flow on both a yearly and longer-term basis. In these rivers, minimal flow occurs throughout much of any year and for periods of up to several years, allowing the trees to become established and to adapt their form in order to facilitate their survival in environments that experience periodic inundation by fast-flowing, debris-laden water. Such trees (notably paperbark trees of the angiosperm genus Melaleuca) adopt a reclined to prostrate, downstream-trailing habit, have a multiple-stemmed form, modified crown with weeping foliage, development of thick, spongy bark, anchoring of roots into firm to lithified substrates beneath the channel floor, root regeneration, and develop in flow-parallel, linear groves. Individuals from within flow-parallel, linear groves are preserved in situ within the alluvial deposit of the river following burial and death. Four examples of in situ tree fossils within alluvial channel deposits in the Permian of eastern Australia demonstrate that specialised riverbed plant communities also existed at times in the geological past. These examples, from the Lower Permian Carmila Beds, Upper Permian Moranbah Coal Measures and Baralaba Coal Measures of central Queensland and the Upper Permian Newcastle Coal Measures of central New South Wales, show several of the characteristics of trees described from modern rivers in northeastern Australia, including preservation in closely-spaced groups. These properties, together with independent sedimentological evidence, suggest that the Permian trees were adapted to an environment affected by highly variable runoff, albeit in a more temperate climatic situation than the modem Australian examples. It is proposed that occurrences of fossil trees preserved in situ within alluvial channel deposits may be diagnostic of environments controlled by seasonal and longer-term variability in fluvial runoff, and hence may have value in interpreting aspects of palaeoclimate from ancient alluvial successions. (C) 2001 Elsevier Science B.V. All rights reserved.