20 resultados para Hadron physics

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Student attitudes towards a subject affect their learning. For students in physics service courses, relevance is emphasised by vocational applications. A similar strategy is being used for students who aspire to continued study of physics, in an introduction to fundamental skills in experimental physics – the concepts, computational tools and practical skills involved in appropriately obtaining and interpreting measurement data. An educational module is being developed that aims to enhance the student experience by embedding learning of these skills in the practicing physicist’s activity of doing an experiment (gravity estimation using a rolling pendulum). The group concentrates on particular skills prompted by challenges such as: • How can we get an answer to our question? • How good is our answer? • How can it be improved? This explicitly provides students the opportunity to consider and construct their own ideas. It gives them time to discuss, digest and practise without undue stress, thereby assisting them to internalise core skills. Design of the learning activity is approached in an iterative manner, via theoretical and practical considerations, with input from a range of teaching staff, and subject to trials of prototypes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulations provide a powerful means to help gain the understanding of crustal fault system physics required to progress towards the goal of earthquake forecasting. Cellular Automata are efficient enough to probe system dynamics but their simplifications render interpretations questionable. In contrast, sophisticated elasto-dynamic models yield more convincing results but are too computationally demanding to explore phase space. To help bridge this gap, we develop a simple 2D elastodynamic model of parallel fault systems. The model is discretised onto a triangular lattice and faults are specified as split nodes along horizontal rows in the lattice. A simple numerical approach is presented for calculating the forces at medium and split nodes such that general nonlinear frictional constitutive relations can be modeled along faults. Single and multi-fault simulation examples are presented using a nonlinear frictional relation that is slip and slip-rate dependent in order to illustrate the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concept of entanglement in systems where the particles are indistinguishable has been the subject of much recent interest and controversy. In this paper we study the notion of entanglement of particles introduced by Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] in several specific physical systems, including some that occur in condensed-matter physics. The entanglement of particles is relevant when the identical particles are itinerant and so not distinguished by their position as in spin models. We show that entanglement of particles can behave differently than other approaches that have been used previously, such as entanglement of modes (occupation-number entanglement) and the entanglement in the two-spin reduced density matrix. We argue that the entanglement of particles is what could actually be measured in most experimental scenarios and thus its physical significance is clear. This suggests that entanglement of particles may be useful in connecting theoretical and experimental studies of entanglement in condensed-matter systems.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The particle-based Lattice Solid Model (LSM) was developed to provide a basis to study the physics of rocks and the nonlinear dynamics of earthquakes (MORA and PLACE, 1994; PLACE and MORA, 1999). A new modular and flexible LSM approach has been developed that allows different microphysics to be easily included in or removed from the model. The approach provides a virtual laboratory where numerical experiments can easily be set up and all measurable quantities visualised. The proposed approach provides a means to simulate complex phenomena such as fracturing or localisation processes, and enables the effect of different micro-physics on macroscopic behaviour to be studied. The initial 2-D model is extended to allow three-dimensional simulations to be performed and particles of different sizes to be specified. Numerical bi-axial compression experiments under different confining pressure are used to calibrate the model. By tuning the different microscopic parameters (such as coefficient of friction, microscopic strength and distribution of grain sizes), the macroscopic strength of the material and can be adjusted to be in agreement with laboratory experiments, and the orientation of fractures is consistent with the theoretical value predicted based on Mohr-Coulomb diagram. Simulations indicate that 3-D numerical models have different macroscopic properties than in 2-D and, hence, the model must be recalibrated for 3-D simulations. These numerical experiments illustrate that the new approach is capable of simulating typical rock fracture behaviour. The new model provides a basis to investigate nucleation, rupture and slip pulse propagation in complex fault zones without the previous model limitations of a regular low-level surface geometry and being restricted to two-dimensions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introductory courses covering modem physics sometimes introduce some elementary ideas from general relativity, though the idea of a geodesic is generally limited to shortest Euclidean length on a curved surface of two spatial dimensions rather than extremal aging in spacetime. It is shown that Epstein charts provide a simple geometric picture of geodesics in one space and one time dimension and that for a hypothetical uniform gravitational field, geodesics are straight lines on a planar diagram. This means that the properties of geodesics in a uniform field can be calculated with only a knowledge of elementary geometry and trigonometry, thus making the calculation of some basic results of general relativity accessible to students even in an algebra-based survey course on physics.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The particle-based lattice solid model developed to study the physics of rocks and the nonlinear dynamics of earthquakes is refined by incorporating intrinsic friction between particles. The model provides a means for studying the causes of seismic wave attenuation, as well as frictional heat generation, fault zone evolution, and localisation phenomena. A modified velocity-Verlat scheme that allows friction to be precisely modelled is developed. This is a difficult computational problem given that a discontinuity must be accurately simulated by the numerical approach (i.e., the transition from static to dynamical frictional behaviour). This is achieved using a half time step integration scheme. At each half time step, a nonlinear system is solved to compute the static frictional forces and states of touching particle-pairs. Improved efficiency is achieved by adaptively adjusting the time step increment, depending on the particle velocities in the system. The total energy is calculated and verified to remain constant to a high precision during simulations. Numerical experiments show that the model can be applied to the study of earthquake dynamics, the stick-slip instability, heat generation, and fault zone evolution. Such experiments may lead to a conclusive resolution of the heat flow paradox and improved understanding of earthquake precursory phenomena and dynamics. (C) 1999 Academic Press.

Relevância:

20.00% 20.00%

Publicador: