52 resultados para HUMAN-MELANOMA CELLS
em University of Queensland eSpace - Australia
Resumo:
Induction of apoptosis in cells by TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, is believed to be regulated by expression of two death-inducing and two inhibitory (decoy) receptors on the cell surface. In previous studies we found no correlation between expression of decoy receptors and susceptibility of human melanoma cells to TRAIL-induced apoptosis, In view of this, we studied the localization of the receptors in melanoma cells by confocal microscopy to better understand their function. We show that the death receptors TRAIL-R1 and R2 are located in the trans-Golgi network, whereas the inhibitory receptors TRAIL-R3 and -R4 are located in the nucleus. After exposure to TRAIL, TRAIL-R1 and -R2 are internalized into endosomes, whereas TRAIL-R3 and -R4 undergo relocation from the nucleus to the cytoplasm and cell membranes. This movement of decoy receptors was dependent on signals from TRAIL-R1 and -R2, as shown by blocking experiments with Abs to TRAIL-R1 and -R2, The location of TRAIL-R1, -R3, and -R4 in melanoma cells transfected with cDNA for these receptors was similar to that in nontransfected cells, Transfection of TRAIL-R3 and -R4 increased resistance of the melanoma lines to TRAIL-induced apoptosis even in melanoma lines that naturally expressed these receptors. These results indicate that abnormalities in decoy receptor location or function may contribute to sensitivity of melanoma to TRAIL-induced apoptosis and suggest that further studies are needed on the functional significance of their nuclear location and TRAIL-induced movement within cell.
Resumo:
Expression of the beta(3) integrin subunit in melanoma in situ has been found to correlate with tumor thickness, the ability to invade and metastasize, and poor prognosis. Transition from the radial growth phase (RGP) to the vertical growth phase (VGP) is a critical step in melanoma progression and survival and is distinguished by the expression of beta(3), integrin. The molecular pathways that operate in melanoma cells associated with invasion and metastasis were examined by ectopic induction of the beta(3), integrin subunit in RGP SBcl2 and WM1552C melanoma cells, which converts these cells to a VGP phenotype. We used cDNA representational difference analysis subtractive hybridization between beta(3)-Positive and -negative melanoma cells to assess gene expression profile changes accompanying RGP to VGP transition. Fourteen fragments from known genes including osteonectin (also known as SPARC and BM-40) were identified after three rounds of representational difference analysis. Induction of osteonectin was confirmed by Northern and Western blot analysis and immunohistochemistry and correlated in organotypic cultures with the beta(3)-induced progression from RGP to VGP melanoma. Expression of osteonectin was also associated with reduced adhesion to vitronectin, but not to fibronectin. Osteonectin expression was not blocked when melanoma cells were cultured with anti-alpha(v)beta(3) LM609 mAb, mitogen-activated protein kinase, or protein kinase C inhibitors, indicating that other signaling pathway(s) operate through a(v)beta(3) integrin during conversion from RGP to VGP.
Resumo:
alpha-Melanocyte-stimulating hormone (alpha-MSH) activates the melanocortin-1 receptor (MC1R) on melanocytes to promote a switch from red/yellow pheomelanin synthesis to darker eumelanins via positive coupling to adenylate cyclase. The human MC1R locus is highly polymorphic with the specific variants associated with red hair and fair skin (RHC phenotype) postulated to be loss-of-function receptors. We have examined the ability of MC1R variants to activate the cAMP pathway in stably transfected REK293 cells. The RHC associated variants, Arg151Cys, Arg160Trp and Asp294His, demonstrated agonist-mediated increases in cAMP and phosphorylation of cAMP-responsive element-binding protein (CREB). Whereas the Asp294His variant showed severely impaired functional responses, the Arg151Cys and Arg160Trp variants retained considerable signaling capacity. Melanoma cells homozygous for either the Arg151Cys variant or consensus sequence both elicited CREB phosphorylation in response to alpha-MSH in the presence of IBMX. The common RHC alleles, Arg151Cys, Arg160Trp and Asp294His, are neither complete loss-of-function receptors nor are they functionally equivalent. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
In previous studies we have shown that the sensitivity of melanoma cell lines to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)induced apoptosis was determined largely by the level of expression of death receptor TRAIL receptor 2 on the cells. However, approximately one-third of melanoma cell lines were resistant to TRAIL, despite expression of high levels of TRAIL receptor 2. The present studies show that these cell lines had similar levels of TRAIL-induced activated caspase-3 as the TRAIL-sensitive lines, but the activated caspase-3 did not degrade substrates downstream of caspase-3 [inhibitor of caspase-activated DNase and poly(ADP-ribose) polymerase]. This appeared to be due to inhibition of caspase-3 by X-linked inhibitor of apoptosis (XIAP) because XIAP was bound to activated caspase-3, and transfection of XIAP into TRAIL-sensitive cell lines resulted in similar inhibition of TRAIL-induced apoptosis. Conversely, reduction of XIAP levels by overexpression of Smac/ DIABLO in the TRAIL-resistant melanoma cells was associated with the appearance of catalytic activity by caspase-3 and increased TRAIL-induced apoptosis. TRAIL was shown to cause release of Smac/DIABLO from mitochondria, but this release was greater in TRAIL-sensitive cell lines than in TRAIL-resistant cell lines and was associated with downregulation of XIAP levels. Furthermore, inhibition of Smac/DIABLO release by overexpression of Bcl-2 inhibited down-regulation of XIAP levels. These results suggest that Smac/DIABLO release from mitochondria and its binding to XIAP are an alternative pathway by which TRAIL induces apoptosis of melanoma, and this pathway is dependent on the release of activated caspase-3 from inhibition by XIAP and possibly other inhibitor of apoptosis family members.
Resumo:
Eph receptor tyrosine kinases and ephrins regulate morphogenesis in the developing embryo where they effect adhesion and motility of interacting cells. Although scarcely expressed in adult tissues, Eph receptors and ephrins are overexpressed in a range of tumours. In malignant melanoma, increased Eph and ephrin expression levels correlate with metastatic progression. We have examined cellular and biochemical responses of EphA3-expressing melanoma cell lines and human epithelial kidney 293T cells to stimulation with polymeric ephrin-A5 in solution and with surfaces of defined ephrin-A5 densities. Within minutes, rapid reorganisation of the actin and myosin cytoskeleton occurs through activation of RhoA, leading to the retraction of cellular protrusions, membrane blebbing and detachment, but not apoptosis. These responses are inhibited by monomeric ephrin-A5, showing that receptor clustering is required for this EphA3 response. Furthermore, the adapter CrkII, which associates with tyrosine-phosphorylated EphA3 in vitro, is recruited in vivo to ephrin-A5-stimulated EphA3. Expression of an SH3-domain mutated CrkII ablates cell rounding, blebbing and detachment. Our results suggest that recruitment of CrkII and activation of Rho signalling are responsible for EphA3-mediated cell rounding, blebbing and de-adhesion, and that ephrin-A5-mediated receptor clustering and EphA3 tyrosine kinase activity are essential for this response.
Resumo:
Background: IL-5 controls development of eosinophilia and has been shown to be involved in the pathogenesis of allergic diseases. In both atopic and nonatopic asthma, elevated IL-5 has been detected in peripheral blood and the airways. IL-5 is produced mainly by activated T cells, and its expression is regulated at the transcriptional level. Objective: This study focuses on the functional analysis of the human IL-5 (hIL-5) promoter and characterization of eis-regulatory elements and transcription factors involved in the suppression of IL-5 transcription in T cells. Methods: Methods used in this study include DNase I footprint assays, electrophoretic mobility shift assays, and functional analysis by mammalian cell transfection involving deletion analysis and site-directed mutagenesis. Results: We identified 5 protein binding regions (BRs) located within the proximal hIL-5 promoter. Functional analysis indicates that the BRs are involved in control of hIL-5 promoter activity. Two of these regions, BR3 and BR4 located at positions -102 to -73, have not previously been described as regulators of IL-5 expression in T cells. We show that the BR3 sequence contains a novel negative regulatory element located at positions -90 to -79 of the hIL-5 promoter, which binds Oct1, octamer-like, and YY1 nuclear factors. Substitution mutations, which abolished binding of these proteins to the BR3 sequence, significantly increased hIL-5 promoter activity in activated T cells. Conclusion: We suggest that Oct1, YY1, and octamer-like factors binding to the -90/-79 sequence within the proximal IL-5 promoter are involved in suppression of IL-5 transcription in T cells.
Resumo:
The current study aims to ascertain the fate of the melanocyte stimulating hormone (MSH) receptor and its ligand [Nle(4), D-Phe(7)]alpha-MsH (NDP-MSH) following binding to murine B16 melanoma cells. Cells were incubated with [I-125]-NDP-MSH for up to 180 min and binding, internalization and degradation determined. Intracellular trafficking of the radiolabel was assessed !using Percoll density gradient centrifugation of homogenized cells. Receptor down-regulation and receptor mRNA levels were also measured over 96 hr after exposure to 1 mu M ligand. NDP-MSH accumulation increased with time in a temperature-dependent manner and was inhibited by excess peptide. The ligand was rapidly internalized and translocated to the lysosomal compartment where it was degraded. Internalization was accompanied by a loss or down-regulation of cell surface receptors, suggesting internalization of the NDP-MSH-receptor complex. No recycling of the receptors between the plasma membrane and intracellular compartments could be detected in this cell-hue. Approximately 15% of the surface receptors were resistant to down-regulation, possibly indicating receptor heterogeneity. Down-regulation persisted ibr up to 96 hr and was accompanied by a decrease in MSH receptor mRNA levels 48 hr after treatment. However, before this time, transcript levels were the same in treated and control cells. In contrast to what was seen with NDP-MSH, cell surface receptors removed with trypsin wc:re rapidly replaced. These results show that NDP-MSH not only induced MSH receptor :internalization but also inhibited receptor turnover, resulting in a prolonged down-regulation. It is concluded that, in B16 cells, the MSH receptor undergoes ligand-dependent internalization, resulting in a prolonged down-regulation. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
We have established a surviving model of isolated limb perfusion using xenografts of the human melanoma cell line MM 96L injected subcutaneously into the hindlimb of a nude rat, The femoral artery and vein were cannulated via the left renal artery and vein and the hind limb was isolated using tourniquets. The limb was perfused with Krebs Heinseleit buffer at 37 degrees C containing 4.7% bovine serum albumin at a constant flow rate of 4 mi per min for 30-60 min with 100% survival of the animals, Tumour vascularization and blood flow were demonstrated using vascular casts and [Cr-51]-microspheres. Following the addition of melphalan (15 or 100 mu g/ml), drug concentrations in the perfusate, tissues and systemic circulation were determined using high pressure liquid chromatography (HPLC), Systemic leakage, assessed using [I-125]albumin and melphalan and detected by a gamma-counter and HPLC respectively, was <0.5%. The melphalan concentration and tissue flow rate in the tumour deposits were 40 and 30% respectively, when compared with the surrounding subcutaneous tissue, At a dose of 15 mu g/ml, melphalan caused a reduction in tumour growth after 60 min perfusion, and a significant reduction in tumour size was seen when the melphalan dose was 100 mu g/ml. The surviving nude rat model of isolated limb perfusion for recurrent melanoma will allow examination of optimal perfusion conditions, along with the pharmacokinetics, pharmacodynamics and efficacy of melphalan and other drugs.
Resumo:
The regulation of putrescine transport in difluoromethylornithine-treated B16 melanoma cells by extracellular Ca2+ has been investigated. It was found that physiological concentrations of Ca2+ were essential for optimum uptake of putrescine and spermidine. Mg2+, albeit at higher concentrations, also could potentiate polyamine transport. The maximum rate of putrescine uptake increased from 1698 +/-: 67 pmol/min/mg DNA in the absence of Ca2+ to 3100 +/- 98 pmol/min/mg DNA in the presence of 0.5 mM Ca2+. There was no change in K-m. While Ca2+ enhanced transport of both putrescine and spermidine it did not affect the uptake of deoxyglucose, thymidine or leucine. Putrescine did not alter Ca2+ fluxes suggesting that the two cations do not share a common transport system. The effects of Ca2+ on putrescine uptake appeared to be mediated extracellularly firstly because Ca2+ did not potentiate putrescine uptake in the presence of A23187 and secondly, because the effects of Ca2+ were completely inhibited by the lanthanide Tb3+, which binds to calcium-dependent proteins and does not readily cross biological membranes. Ca2+ did not affect putrescine transport in the absence of extracellular Na+. Moreover, the rate of putrescine uptake in the absence of Ca2+ was similar to that in the absence of extracellular Na+. The results from this study indicate that polyamine transport is stimulated by extracellular Ca2+ and suggest that Ca2+ is required for activity of the Na+-dependent transporter only. This transporter appears to possess a regulatory binding site for divalent cations. (C) 1997 Elsevier Science Ltd.
Resumo:
An isolated rat hindlimb perfusion model carrying xenografts of the human melanoma cell line MM96 was used to study the effects of perfusion conditions on melphalan distribution. Krebs-Henseleit buffer and Hartmann's solution containing 4.7% bovine serum albumin (BSA) or 2.8% dextran 40 were used as perfusates. Melphalan concentrations in perfusate, tumour nodules and normal tissues were measured using high-performance liquid chromatography (HPLC). Increasing the perfusion flow rates (from 4 to 8 mi min(-1)) resulted in higher tissue blood flow (determined with Cr-51-labelled microspheres) and melphalan uptake by tumour and normal tissues. me distribution of melphalan within tumour nodules and normal tissues was similar for both Krebs-Henseleit buffer and Hartmann's solution; however, tissue concentrations of melphalan were significantly higher for a perfusate containing 2.8% dextran 40 than for one containing 4.7% BSA. The melphalan concentration in the tumour was one-third of that found in the skin if the perfusate contained 4.7% BSA. In conclusion, this study has shown that a high perfusion flow enhances the delivery of melphalan into implanted tumour nodules and normal tissues, and a perfusate with low melphalan binding (no albumin) is preferred for maximum uptake of drug by the tumour.
Resumo:
In this study, we demonstrate that Muller cells cultured from human retinas are capable of strongly expressing the glycine transporter Glyt-1 as assessed by immunocytochemistry. By contrast, intact normal and pathological human retinas exhibit Glyt-1 immunoreactivity only in neurons. These data suggest that Glyt-1 expression in cultured Muller cells is an epiphenomenon associated with culturing in vitro, rather than a normal physiological or even pathophysiological phenomenon in vivo. (C) 2001 Wiley-Liss, Inc.
Resumo:
Dendritic cells (DCs) are important targets for human immunodeficiency virus (HIV) because of their roles during transmission and also maintenance of immune competence. Furthermore, DCs are a key cell in the development of HIV vaccines. In both these settings the mechanism of binding of the HIV envelope protein gp120 to DCs is of importance. Recently a single C-type lectin receptor (CLR), DC-SIGN, has been reported to be the predominant receptor on monocyte-derived DCs (MD-DCs) rather than CD4. In this study a novel biotinylated gp120 assay was used to determine whether CLR or CD4 were predominant receptors on MDDCs and ex vivo blood DCs. CLR bound more than 80% of gp120 on MDDCs, with residual binding attributable to CD4, reconfirming that CLRs were the major receptors for gp120 on MDDCs. However, in contrast to recent reports, gp120 binding to at least 3 CLRs was observed: DC-SIGN, mannose receptor, and unidentified trypsin resistant CLR(s). In marked contrast, freshly isolated and cultured CD11c(+ve) and CD11c(-ve) blood DCs only bound gp120 via CD4. In view of these marked differences between MDDCs and blood DCs, HIV capture by DCs and transfer mechanisms to T cells as well as potential antigenic processing pathways will need to be determined for each DC phenotype. (Blood. 2001;98:2482-2488) (C) 2001 by The American Society of Hematology.
Resumo:
Syntaxin 7 is a mammalian target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) involved in membrane transport between late endosomes and lysosomes. The aim of the present study was to use immunoaffinity techniques to identify proteins that interact with Syntaxin 7. We reasoned that this would be facilitated by the use of cells producing high levels of Syntaxin 7, Screening of a large number of tissues and cell lines revealed that Syntaxin 7 is expressed at very high levels in B16 melanoma cells. Moreover, the expression of Syntaxin 7 increased in these cells as they underwent melanogenesis. From a large scale Syntaxin 7 immunoprecipitation, we have identified six polypeptides using a combination of electrospray mass spectrometry and immunoblotting. These polypeptides corresponded to Syntaxin 7, Syntaxin 6, mouse Vps10p tail interactor 1b (mVti1b), alpha -synaptosome-associated protein (SNAP), vesicle-associated membrane protein (VAMP)8, VAMP7, and the protein phosphatase 1M regulatory subunit. We also observed partial colocalization between Syntaxin 6 and Syntaxin 7, between Syntaxin 6 and mVti1b, but not between Syntaxin 6 and the early endosomal t-SNARE Syntaxin 13. Based on these and data reported previously, we propose that Syntaxin 7/mVti1b/Syntaxin 6 may form discrete SNARE complexes with either VAMP7 or VAMPS to regulate fusion events within the late endosomal pathway and that these events may play a critical role in melanogenesis.
Resumo:
Recent population studies have demonstrated an association with the red-hair and fair-skin phenotype with variant alleles of the melanocortin-1 receptor (MC1R) which result in amino acid substitutions within the coding region leading to an altered receptor activity. In particular, Arg151Cys, Arg160Trp and Asp294His were the most commonly associated variants seen in the south-east Queensland population with at least one of these alleles found in 93% of those with red hair. In order to study the individual effects of these variants on melanocyte biology and melanocytic pigmentation, we established a series of human melanocyte strains genotyped for the MC1R receptor which included wild-type consensus, variant heterozygotes, compound heterozygotes and homozygotes for Arg151Cys, Arg160Trp, Val60Leu and Val92Met alleles. These strains ranged from darkly pigmented to amelanotic, with all strains of consensus sequence having dark pigmentation. UV sensitivity was found not to be associated with either MC1R genotype or the level of pigmentation with a range of sensitivities seen across all genotypes. Ultrastructural analysis demonstrated that while consensus strains contained stage IV melanosomes in their terminal dendrites, Arg151Cys and Arg160Trp homozygote strains contained only stage II melanosomes. This was despite being able to show expression of tyrosinase and tyrosinase-related protein-1 markers, although at reduced levels and an ability to convert exogenous 3,4-dihydroxyphenyl-alanine (DOPA) to melanin in these strains.