110 resultados para HUMAN GASTRIC-CANCER
em University of Queensland eSpace - Australia
Resumo:
This study describes a simple method for long-term establishment of human ovarian tumor lines and prediction of T-cell epitopes that could be potentially useful in the generation of tumor-specific cytotoxic T lymphocytes (CTLs), Nine ovarian tumor lines (INT.Ov) were generated from solid primary or metastatic tumors as well as from ascitic fluid, Notably all lines expressed HLA class I, intercellular adhesion molecule-1 (ICAM-1), polymorphic epithelial mucin (PEM) and cytokeratin (CK), but not HLA class II, B7.1 (CD80) or BAGE, While of the 9 lines tested 4 (INT.Ov1, 2, 5 and 6) expressed the folate receptor (FR-alpha) and 6 (INT.Ov1, 2, 5, 6, 7 and 9) expressed the epidermal growth factor receptor (EGFR); MAGE-1 and p185(HER-2/neu) were only found in 2 lines (INT.Ov1 and 2) and GAGE-1 expression in 1 line (INT.Ov2). The identification of class I MHC ligands and T-cell epitopes within protein antigens was achieved by applying several theoretical methods including: 1) similarity or homology searches to MHCPEP; 2) BIMAS and 3) artificial neural network-based predictions of proteins MACE, GAGE, EGFR, p185(HER-2/neu) and FR-alpha expressed in INT.Ov lines, Because of the high frequency of expression of some of these proteins in ovarian cancer and the ability to determine HLA binding peptides efficiently, it is expected that after appropriate screening, a large cohort of ovarian cancer patients may become candidates to receive peptide based vaccines. (C) 1997 Wiley-Liss, Inc.
Resumo:
We show here that the neurotrophin nerve growth factor (NGF), which has been shown to be a mitogen for breast cancer cells, also stimulates cell survival through a distinct signaling pathway. Breast cancer cell lines (MCF-7, T47-D, BT-20, and MDA-MB-231) were found to express both types of NGF receptors: p140(trkA) and p75(NTR). The two other tyrosine kinase receptors for neurotrophins, TrkB and TrkC, were not expressed. The mitogenic effect of NGF on breast cancer cells required the tyrosine kinase activity of p140(trkA) as well as the mitogen-activated protein kinase (MAPK) cascade, but was independent of p75(NTR). I, contrast, the anti-apoptotic effect of NGF (studied using the ceramide analogue C2) required p75(NTR) as well as the activation of the transcription factor NF-kB, but neither p140(trkA) nor MAPK was necessary. Other neurotrophins (BDNF, NT-3, NT-4/5) also induced cell survival, although not proliferation, emphasizing the importance of p75(NTR) in NGF-mediated survival. Both the pharmacological NF-KB inhibitor SN50, and cell transfection with IkBm, resulted in a diminution of NGF anti-apoptotic effect. These data show that two distinct signaling pathways are required for NGF activity and confirm the roles played by p75(NTR) and NF-kappaB in the activation of the survival pathway in breast cancer cells.
Resumo:
The class of molecular chaperones known as 14-3-3 is involved in the control of cellular growth by virtue of its apparent regulation of various signaling pathways, including the Raf/mitogen-activated protein kinase pathway. In breast cancer cells, the sigma form of 14-3-3 has been shown to interact with cyclin-dependent kinases and to control the rate of entry into mitosis. To test for a direct role for 14-3-3 in breast epithelial cell neoplasia, me have quantitated 14-3-3 protein levels using a proteomic approach based on two-dimensional electrophoresis and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF). We show here that 14-3-3 sigma protein is strongly down-regulated in the prototypic breast cancer cell lines MCF-7 and MDA-MB-231 and in primary breast carcinomas as compared with normal breast epithelial cells. In contrast, levels of the alpha, beta, delta, or zeta isoforms of 14-3-3 mere the same in both normal and transformed cells. The data support the idea that 14-3-3 sigma is involved in the neoplastic transition of breast epithelial cells by virtue of its role as a tumor suppressor; as such, it may constitute a robust marker with clinical efficacy for this pathology.
Resumo:
Peroxisome proliferator-activated receptor (PPAR) alpha is a ligand-activated transcription factor that has been linked with rodent hepatocarcinogenesis. It has been suggested that PPARalpha mRNA expression levels are an important determinant of rodent hepatic tumorigenicity. Previous work in rat mammary gland epithelial cells showed significantly increased PPARalpha mRNA expression in carcinomas, suggesting the possible role of this isoform in rodent mammary gland carcinogenesis. In this study we sought to determine whether PPARalpha is expressed and dynamically regulated in human breast cancer MCF-7 and MDA-MB-231 cells. Having established the presence of PPARalpha in both cell types, we then examined the consequence of PPARa activation, by its ligands Wy-14,643 and clofibrate, on proliferation. With real-time reverse transcriptase-polymerase chain reaction, we showed that PPARalpha mRNA was dynamically regulated in MDA-MB-231 cells and that PPARalpha activation significantly increased proliferation of the cell line. In contrast, PPARalpha expression in MCF-7 cells did not change with proliferation during culture and was present at significantly lower levels than in MDA-MB-231 cells. However, PPARalpha ligand activation still significantly increased the proliferation of MCF-7 cells. The promotion of proliferation in breast cancer cell lines following PPARalpha activation was in stark contrast to the effects of PPARgamma-activating ligands that decrease proliferation in human breast cancer cells. our results established the presence of PPARalpha in human breast cancer cell lines and showed for the first time that activation of PPARalpha in human breast cancer cells promoted proliferation. Hence, this pathway may be significant in mammary gland tumorigenesis. (C) 2002 Wiley-Liss, Inc.
Resumo:
Background and Objectives: Selection of suitable treatment for early gastric cancers, such as endoscopic mucosal resection or the major surgical option of resection of the cancer together with a radical lymph node dissection, may be assisted by comparing the growth characteristics of the cancer with selected molecular characteristics. The results could be used to predict those cases that have a higher risk of developing secondary metastases. Methods: A total of 1,196 Japanese patients with early gastric cancers (648 mucosal cancers and 548 submucosal) were included in the selection of two groups: a metastatic group made up 57 cancers with lymph node metastasis (9 mucosal, 48 submucosal), and a nonmetastatic group of 61 cases (6 mucosal, 55 submucosal) without lymph node metastasis. Growth characteristics of the cancers (superficially spreading, penetrating or invasive, lymph node metastasis) were compared with immunohistochemical expression of single-stranded DNA (ssDNA) protein (apoptosis indicator), bcl-2 and p53 (apoptosis-associated), Ki-67 (cell proliferation), and E-cadherin (cell adhesion) proteins. Results: The lesions in the nonmetastatic group had higher levels of apoptosis and lower expression of bcl-2 than in the metastatic group, indicating an inhibitory role for apoptosis in malignant progression. Apoptosis was also higher in the superficial compared with the invasive lesions of both groups. The lesions in the metastatic group had higher p53 expression than that of the nonmetastatic group, whereas apoptosis in the metastatic group was lower than in the nonmetastatic group. An unproved explanation for this finding may be that, although increased, p53 was mutated and ineffective in promoting apoptotic control of metastatic progression. E-cadherin was decreased in the invasive lesions of both groups, indicating a greater ability of these cells to lose adhesion, to invade the submucosa, and to metastasize. Cell proliferation was highest in the superficial lesions of both metastatic and nonmetastatic groups. Conclusions: Early gastric cancers with low levels of apoptosis, increased bcl-2, and high levels of p53 expression are more likely to invade and metastasize. (C) 2003 Wiley-Liss, Inc.
Resumo:
There is evidence to suggest that plasma membrane Ca2+-ATPase (PMCA) isoforms are important mediators of mammary gland physiology. PMCA2 in particular is upregulated extensively during lactation. Expression of other isoforms such as PMCA4 may influence mammary gland epithelial cell proliferation and aberrant regulation of PMCA isoform expression may lead or contribute to mammary gland pathophysiology in the form of breast cancers. To explore whether PMCA2 and PMCA4 expression may be deregulated in breast cancer, we compared mRNA expression of these PMCA isoforms in tumorigenic and non-tumorigenic human breast epithelial cell lines using real time RT-PCR. PMCA2 mRNA has a higher level of expression in some breast cancer cell lines and is overexpressed more than 100-fold in ZR-75-1 cells, compared to non-tumorigenic 184135 cells. Although differences in PMCA4 mRNA levels were observed between breast cell lines, they were not of the magnitude observed for PMCA2. We conclude that PMCA2 mRNA can be highly overexpressed in some breast cancer cells. The significance of PMCA2 overexpression on tumorigenicity and its possible correlation with other properties such as invasiveness requires further study. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Phytochemicals have provided an abundant and effective source of therapeutics for the treatment of cancer. Here we describe the characterization of a novel plant toxin, persin, with in vivo activity in the mammary gland and a p53-, estrogen receptor-, and Bcl-2-independent mode of action. Persin was previously identified from avocado leaves as the toxic principle responsible for mammary gland-specific necrosis and apoptosis in lactating livestock. Here we used a lactating mouse model to confirm that persin has a similar cytotoxicity for the lactating mammary epithelium. Further in vitro studies in a panel of human breast cancer cell lines show that persin selectively induces a G(2)-M cell cycle arrest and caspase-dependent apoptosis in sensitive cells. The latter is dependent on expression of the BH3-only protein Bim. Bim is a sensor of cytoskeletal integrity, and there is evidence that unique structure of the compound, persin could represent a novel class of microtubule-targeting agent with potential specificity for breast cancers.
Resumo:
Arsenic trioxide appears to be effective in the treatment of pro-myelocytic leukaemia. The substituted phenylarsen(III)oxides are highly polar, they have a high tendency to undergo oxidation to As (V) and to form oligomers, to prevent this we protected the As-(OH)2 group as cyclic dithiaarsanes. To increase the compound's biological stability and passive diffusion we conjugated the compound of interest with lipoamino acids (Laas). Alternatively, we further conjugated the dithiaarsane derivative with a carbohydrate to utilize active transport systems and to target compound. We investigated two novel glyco-lipid arsenicals (III) (compounds 9 and 11) for their ability to initiate MCF-7 breast cancer cell death and characterized the mechanism by which death was initiated. A significant decrease in MCF-7 cell proliferation was observed using 1 μM and 10 μM compound (11) and 10 μM of compound (9). Treatment with compound (11) triggered apoptosis of MFC-7 cells while compound (9) induced inhibition of cellular proliferation was not via rapid induction of apoptosis and more likely reflected necrosis and/ or alterations in the cell cycle. Differences in the anti-proliferative potency of the two compounds indicate that structural modifications influence effectiveness. © 2006 Bentham Science Publishers Ltd.
Resumo:
Fibroblast growth factor-2 (FGF-2) is mitogenic for the human breast cancer cell line MCF-7; here we investigate some of the signaling pathways subserving this activity. FGF-2 stimulation of MCF-7 cells resulted in a global increase of intracellular tyrosine phosphorylation of proteins, particularly FGF receptor substrate-2, the protooncogene product Src and the mitogen-activated protein kinase (MAP kinase) cascade, A major increase in the tyrosine phosphorylation of a 30-kDa protein species was also found. This protein was identified as cyclin D2 by mass spectrometry after trypsin digestion. Immunoprecipitation of cyclin D2 and immunoblotting with anti-phosphotyrosine antibodies confirmed that the tyrosine phosphorylation of cyclin D2 was indeed induced by FGF-2 stimulation. In addition, pharmacological inhibition of Src (with herbimycin A and PP2), and of the MAP kinase cascade (with PD98059), confirmed that Src activity is required for the FGF-2-induced phosphorylation of cyclin D2 whereas MAP kinase activity is not, Thus, tyrosine phosphorylation of cyclin D2 may be a hey regulatory target for FGF-2 signaling. (C) 2000 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.