62 resultados para HUMAN BMP-7
em University of Queensland eSpace - Australia
Resumo:
Background: Growth hormone (GH) is a potent regulator of bone formation. The proposed mechanism of GH action is through the stimulation of osteogenic precursor Cell proliferation and, following clonal expansion of these cells. promotion of differentiation along the osteogenic lineage. Objectives: We tested this hypothesis by studying the effects of GH on primary cell populations of human periodontal ligament cells (PLC) and alveolar bone cells (ABC), which contain a spectrum of osteogenic precursors. Method: The cell populations were assessed for mineralization potential after long-term culture in media containing beta-glycerophosphate and ascorbic acid, by the demonstration of mineral deposition by Von Kossa staining. The proliferative response of the cells to GH was determined over a 48-h period using a crystal violet dye-binding assay. The profile of the cells in terms of osteogcnic marker expression was established using quantitative reverse transcriptase polymerase chain reaction (RT-PCR) for alkaline phosphatase (ALP), osteopontin. osteocalcin, bone sialoprotein (BSP), as well as the bone morphogenetic proteins BMP-2, BMP-4 and BMP-7. Results: As expected, a variety of responses were observed ranging from no mineralization in the PLC populations to dense mineralized deposition observed in one GH-treated ABC population. Over a 48-h period GH was found to be non-mitogenic for all cell populations. Quantitative reverse transcriptase polymerase chain reaction (RT-PCR) BSP mRNA expression correlated well with mineralizing potential of the cells. The change in the mRNA expression of the osteogenic markers was determined following GH treatment of the cells over a 48-h period. GH caused an increase in ALP in most cell populations, and also in BMP expression in some cell populations. However a decrease in BSP. osteocalcin and osteopontin expression in the more highly differentiated cell populations was observed in response to GH. Conclusion: The response of the cells indicates that while long-term treatment with GH may promote mineralization, short-term treatment does not promote proliferation of osteoblast precursors nor induce expression of late osteogenic markers.
Resumo:
Relationships between cadmium (Cd) body burden, kidney function and coumarin metabolism were investigated using two groups of 197 and 200 healthy Thais with men and women in nearly equal numbers. A mean age of one group was 30.5 years and it was 39.3 years for the other group. Of 397, 20 subjects (5%) excreted urine Cd between 1.4 mug/g and 3.8 mug/g creatinine and these subjects faced 10-15% increase in the probability of having abnormal urinary excretion of N-acetyl-beta-D-glucosaminidase (NAG-uria). The prevalence of NAG-uria varied with Cd body burden in a dose-dependent manner (chi(2) = 22, P < 0.008). Also NAG-nuria was one of the three kidney effect markers tested that showed the greatest strength of correlation with urine Cd in both men and women (r = 0.48 P < 0.001). In addition, urine Cd excretion of men and women showed a positive correlation (r = 0.46 to 0.54. P < 0.001) with urine 7-hydroxycoumarin (7-OHC) excretion which was used as a marker of liver cytochrome P450 2A6 (CYP2A6) enzyme activity. Urinary CA excretion accounted for 25% of the total variation in urine 7-OHC excretion (P < 0.001). These data suggest that Cd may increase the expression of CYP2A6 in liver, resulting in enhanced coumarin metabolism in subjects with high Cd body burden. (C) 2003 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Peroxisome proliferator-activated receptor (PPAR) alpha is a ligand-activated transcription factor that has been linked with rodent hepatocarcinogenesis. It has been suggested that PPARalpha mRNA expression levels are an important determinant of rodent hepatic tumorigenicity. Previous work in rat mammary gland epithelial cells showed significantly increased PPARalpha mRNA expression in carcinomas, suggesting the possible role of this isoform in rodent mammary gland carcinogenesis. In this study we sought to determine whether PPARalpha is expressed and dynamically regulated in human breast cancer MCF-7 and MDA-MB-231 cells. Having established the presence of PPARalpha in both cell types, we then examined the consequence of PPARa activation, by its ligands Wy-14,643 and clofibrate, on proliferation. With real-time reverse transcriptase-polymerase chain reaction, we showed that PPARalpha mRNA was dynamically regulated in MDA-MB-231 cells and that PPARalpha activation significantly increased proliferation of the cell line. In contrast, PPARalpha expression in MCF-7 cells did not change with proliferation during culture and was present at significantly lower levels than in MDA-MB-231 cells. However, PPARalpha ligand activation still significantly increased the proliferation of MCF-7 cells. The promotion of proliferation in breast cancer cell lines following PPARalpha activation was in stark contrast to the effects of PPARgamma-activating ligands that decrease proliferation in human breast cancer cells. our results established the presence of PPARalpha in human breast cancer cell lines and showed for the first time that activation of PPARalpha in human breast cancer cells promoted proliferation. Hence, this pathway may be significant in mammary gland tumorigenesis. (C) 2002 Wiley-Liss, Inc.
Resumo:
Arsenic trioxide appears to be effective in the treatment of pro-myelocytic leukaemia. The substituted phenylarsen(III)oxides are highly polar, they have a high tendency to undergo oxidation to As (V) and to form oligomers, to prevent this we protected the As-(OH)2 group as cyclic dithiaarsanes. To increase the compound's biological stability and passive diffusion we conjugated the compound of interest with lipoamino acids (Laas). Alternatively, we further conjugated the dithiaarsane derivative with a carbohydrate to utilize active transport systems and to target compound. We investigated two novel glyco-lipid arsenicals (III) (compounds 9 and 11) for their ability to initiate MCF-7 breast cancer cell death and characterized the mechanism by which death was initiated. A significant decrease in MCF-7 cell proliferation was observed using 1 μM and 10 μM compound (11) and 10 μM of compound (9). Treatment with compound (11) triggered apoptosis of MFC-7 cells while compound (9) induced inhibition of cellular proliferation was not via rapid induction of apoptosis and more likely reflected necrosis and/ or alterations in the cell cycle. Differences in the anti-proliferative potency of the two compounds indicate that structural modifications influence effectiveness. © 2006 Bentham Science Publishers Ltd.
Resumo:
Fibroblast growth factor-2 (FGF-2) is mitogenic for the human breast cancer cell line MCF-7; here we investigate some of the signaling pathways subserving this activity. FGF-2 stimulation of MCF-7 cells resulted in a global increase of intracellular tyrosine phosphorylation of proteins, particularly FGF receptor substrate-2, the protooncogene product Src and the mitogen-activated protein kinase (MAP kinase) cascade, A major increase in the tyrosine phosphorylation of a 30-kDa protein species was also found. This protein was identified as cyclin D2 by mass spectrometry after trypsin digestion. Immunoprecipitation of cyclin D2 and immunoblotting with anti-phosphotyrosine antibodies confirmed that the tyrosine phosphorylation of cyclin D2 was indeed induced by FGF-2 stimulation. In addition, pharmacological inhibition of Src (with herbimycin A and PP2), and of the MAP kinase cascade (with PD98059), confirmed that Src activity is required for the FGF-2-induced phosphorylation of cyclin D2 whereas MAP kinase activity is not, Thus, tyrosine phosphorylation of cyclin D2 may be a hey regulatory target for FGF-2 signaling. (C) 2000 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors involved in various metabolic diseases. In the liver, PPARα is involved in alcohol metabolism and may lead to the development of alcoholic fatty liver and other alcohol mediated liver injuries. PPARβ modulation by ethanol induces abnormal myelin production by oligodendrocytes. PPARα and PPARβ are PPAR isoforms expressed in the human breast cell lines. Epidemiological studies show a positive correlation between alcohol intake and breast cancer risk, however, the molecular mechanisms involved are unclear. We hypothesized that ethanol would affect the expression and transactivation of human PPAR isoforms in estrogen receptor (ER) positive and ER negative breast cancer cells. Using real time RT-PCR we looked at the transcription of PPAR isoforms in the presence of increasing concentrations of ethanol and saw isoform and time dependent specific effects. Gene reporter assays enabled us to ascertain the effects of ethanol on ligand-mediated activation of human PPARα and PPARβ at concentrations equivalent to both moderate and chronic alcohol consumption. Ethanol differentially blocked the ligand-mediated activation of both PPARα and PPARβ. Since PPARα and PPARβ are involved in the differentiation and proliferation of breast cancer cells, PPARs may be a possible mechanism involved in the effect of ethanol in breast cancer.
Resumo:
1. The response of the diaphragm to the postural perturbation produced by rapid flexion of the shoulder to a visual stimulus was evaluated in standing subjects. Gastric, oesophageal and transdiaphragmatic pressures were measured together with intramuscular and oesophageal recordings of electromyographic activity (EMG) in the diaphragm. To assess the mechanics of contraction of the diaphragm, dynamic changes in the length of the diaphragm were measured with ultrasonography. 2. With rapid flexion of the shoulder in response to a visual stimulus, EMG-activity in the costal and crural diaphragm occurred about 20 ms prior to the onset of deltoid EMG. This anticipatory contraction occurred irrespective of the phase of respiration in which arm movement began. The onset of diaphragm EMG-coincided with that of transversus abdominis. 3. Gastric and transdiaphragmatic pressures increased in association with the rapid arm flexion by 13.8 +/- 1.9 (mean +/- S.E.M.) and 13.5 +/- 1.8 cmH(2)O, respectively. The increases occurred 49 +/- 4 ms after the onset of diaphragm EMG, but preceded the onset of movement of the limb by 63 +/- 7 ms. 4. Ultrasonographic measurements revealed that the costal diaphragm shortened and then lengthened progressively during the increase in transdiaphragmatic pressure. 5. This study provides definitive evidence that the human diaphragm is involved in the control of postural stability during sudden voluntary movement of the limbs.
Resumo:
1 Voltage-operated calcium channel (VOCC) antagonists are effective antihypertensive and antianginal agents but they also depress myocardial contractility. 2 We compared four L-type calcium channel antagonists, felodipine, nifedipine, amlodipine and verapamil and a relatively T-type selective calcium channel antagonist, mibefradil, on human and rat isolated tissue assays to determine their functional vascular to cardiac tissue selectivity (V/C) ratio. 3 The V/C ratio was calculated as the ratio of the IC50 value of the antagonist that reduced (by 50%) submaximally contracted (K+ 62 mM) human small arteries from the aortic vasa vasorum (vascular, V) mounted in a myograph and the IC50 value of the antagonist that reduced (-)-isoprenaline (6 nM) submaximally stimulated human right atrial trabeculae muscle (cardiac, C) mounted in organ chambers. 4 The average pIC(50) Values (-log IC50 M) for the human vascular preparations were felodipine 8.30, nifedipine 7.78, amlodipine 6.64, verapamil 6.26 and mibefradil 6.22. The average pIC(50) values for the cardiac muscle were felodipine 7.21, nifedipine 6.95, verapamil 6.91, amlodipine 5.94, and mibefradil 4.61. 5 The V/C ratio calculated as antilog [pIC(50)V-pIC(50)C] is thus mibefradil 41, felodipine 12, nifedipine 7, amlodipine 5 and verapamil 0.2. 6 In rat small mesenteric arteries the pIC(50) values for the five drugs were similar to the values for human vasa vasorum arteries contracted by K+ 62 mM. However for methoxamine (10 mu M) contraction in the rat arteries the pIC(50) values were lower for felodipine 7.24 and nifedipine 6.23, but similar for verapamil 6.13, amlodipine 6.28 and mibefradil 5.91. 7 In conclusion in the human tissue assays, the putative T-channel antagonist mibefradil shows the highest vascular to cardiac selectivity ratio; some 3 fold higher than the dihydropyridine, felodipine, and some 200 fold more vascular selective than the phenylalkylamine, verapamil. This favourable vascular to cardiac selectivity for mibefradil, from a new chemical class of VOCC antagonist, may be explained by its putative T-channel selectivity.
Resumo:
The activities of conantokin-G (con-G), conantokin-T (con-T), and several novel analogues have been studied using polyamine enhancement of [H-3]MK-801 binding to human glutamate-N-methyl-D-aspartate (NMDA) receptors, and their structures have been examined using CD and H-1 NMR spectroscopy. The potencies of con-G[A7], con-G, and con-T as noncompetitive inhibitors of spermine-enhanced [H-3]MK-801 binding to NMDA receptor obtained from human brain tissue are similar to those obtained using rat brain tissue. The secondary structure and activity of con-G are found to be highly sensitive to amino acid substitution and modification. NMR chemical shift data indicate that con-G, con-G[D8,D17], and con-G[A7] have similar conformations in the presence of Ca2+. This consists of a helix for residues 2-16, which is kinked in the vicinity of Gla10. This is confirmed by 3D structure calculations on con-G[A7]. Restraining this helix in a linear form (i.e., con-G[A7,E10-K13]) results in a minor reduction in potency. Incorporation of a 7-10 salt-bridge replacement (con-G[K7-E10]) prevents helix formation in aqueous solution and produces a peptide with low potency. Peptides with the Leu5-Tyr5 substitution also have low potencies (con-G[Y5,A7] and con-G[Y5,K7]) indicating that Leu5 in con-G is important for full antagonist behavior. We have also shown that the Gla-Ala7 substitution increases potency, whereas the Gla-Lys7 substitution has no effect. Con-G and con-G[K7] both exhibit selectivity between NMDA subtypes from mid-frontal and superior temporal gyri, but not between sensorimotor and mid-frontal gyri. Asn8 and/or Asn17 appear to be important for the ability of con-G to function as an inhibitor of polyamine-stimulated [3H]MK-801 binding, but not in maintaining secondary structure. The presence of Ca2+ does not increase the potencies of con-G and con-T for NMDA receptors but does stabilize the helical structures of con-G, con-G[D8,D17], and, to a lesser extent, con-G[A7]. The NMR data support the existence of at least two independent Ca2+-chelating sites in con-G, one involving Gla7 and possibly Gla3 and the other likely to involve Gla10 and/or Gla14.
Resumo:
We wish to report the detection of dimethyl sulfone (methylsulfonylmethane, C2H6O2S) in the brain of a normal 62-year-old male using in vivo proton magnetic resonance spectroscopy. The presence of this exogenous metabolite resulted from ingestion of a dietary supplement containing dimethyl sulfone. The concentration of this compound in the brain was measured to be 2.4 mmol, with a washout half life of approximately 7.5 days. The in vivo T-1 and T-2 relaxation times of dimethyl sulfone were measured to be 2180 ms and 385 ms, respectively. The concentration of major brain metabolites, namely N-acetylaspartate, total Creatine and Choline, and myo-Inositol were within normal limits. (C) 2000 Elsevier Science Inc. All rights reserved.
Resumo:
Dual-energy X-ray absorptiometry (DXA) is a widely used method for measuring bone mineral in the growing skeleton. Because scan analysis in children offers a number of challenges, we compared DXA results using six analysis methods at the total proximal femur (PF) and five methods at the femoral neck (FN), In total we assessed 50 scans (25 boys, 25 girls) from two separate studies for cross-sectional differences in bone area, bone mineral content (BMC), and areal bone mineral density (aBMD) and for percentage change over the short term (8 months) and long term (7 years). At the proximal femur for the short-term longitudinal analysis, there was an approximate 3.5% greater change in bone area and BMC when the global region of interest (ROI) was allowed to increase in size between years as compared with when the global ROI was held constant. Trend analysis showed a significant (p < 0.05) difference between scan analysis methods for bone area and BMC across 7 years. At the femoral neck, cross-sectional analysis using a narrower (from default) ROI, without change in location, resulted in a 12.9 and 12.6% smaller bone area and BMC, respectively (both p < 0.001), Changes in FN area and BMC over 8 months were significantly greater (2.3 %, p < 0.05) using a narrower FN rather than the default ROI, Similarly, the 7-year longitudinal data revealed that differences between scan analysis methods were greatest when the narrower FN ROI was maintained across all years (p < 0.001), For aBMD there were no significant differences in group means between analysis methods at either the PF or FN, Our findings show the need to standardize the analysis of proximal femur DXA scans in growing children.
Resumo:
The reactivity of sera from patients with cervical cancer with the E7 protein of human papilloma virus type 16 (HPV16) was estimated using a novel non-radioactive immunoprecipitation assay and four established protein-and peptide-based immunoassays. Six of 14 sera from patients with cervical cancer and 1 of 10 sera from healthy laboratory staff showed repeated reactivity with E7 in at least one assay. Four of the 7 reactive sera were consistently reactive in more than one assay, but only one was reactive in all four assays. Following immunization with E7, 2 of 5 patients with cervical cancer had increased E7-specific reactivity, measurable in one or more assays. No single assay was particularly sensitive for E7 reactivity, or predictive of cervical cancer. Mapping of E7 reactivity to specific E7 peptides was unsuccessful, suggesting that natural or induced E7 reactivity in human serum is commonly directed to conformational epitopes of E7, These results suggest that each assay employed with is study measures a different aspect of E7 reactivity, and that various reactivities to E7 may manifest following HPV infection or immunization. This finding is of significance for monitoring of E7 immunotherapy and for serological screening for cervical cancer. Copyright (C) 2000 S.Karger, AG. Basel.