17 resultados para HIGH-PURITY GE DETECTORS

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of iron on the grain refinement of high-purity Mg-3%Al and Mg-91%Al alloys has been investigated using anhydrous FeCl3 as an iron additive at 750degreesC in carbon-free aluminium titanite crucibles. It was shown that grain refinement was readily achievable for both alloys. Fe- and Al-rich intermetallic particles were observed in many magnesium grains. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using native chemical ligation, we synthesized a group A streptococcal. (GAS) vaccine that contained three different GAS M protein peptide epitopes in a chemically well-characterized construct in high purity. Two of the peptide epitopes represented variable amino terminal serotype determinants, and the third represented a carboxyl terminal conserved region determinant of the GAS M protein. We also synthesized a lipid core peptide (LCP) construct containing the same three peptides. Upon immunization of mice, the non-LCP construct only elicited antibody responses to all three epitopes with the use of adjuvant. The LCP construct, however, elicited excellent antibody responses to all three epitopes without the need for any additional adjuvant or carrier. We have synthesized the LCP synthetic vaccine system with good reproducibility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High purity one-dimensional ZnO nanobelts were synthesized by thermally evaporating commercial ZnS powders in a hydrogen-oxygen mixture gas at 1050 degrees C. It was found that these ZnO nanobelts had a single crystal hexagonal wurtzite structure growing along the [0001] direction. They had a rectangle-shaped cross-section with typical widths of 20 to 100 nanometers and lengths of up to hundreds of micrometers with lattice constants of a = 0.325 nm and c = 0.520 nm. The self-catalytic hydrogen-oxygen assisted growth of ZnO nanobelt is discussed. The photoluminescence (PL) characterization of the ZnO nanobelts shows strong near-band UV emission (about 383 nm) and one broad peak at 501 nm, which indicates that the ZnO nanobelts have good potential application in optoelectronic devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In addition to a change in silicon morphology, modification of aluminium-silicon alloys with strontium or sodium increases the size of the eutectic grains. To determine the mechanism responsible, eutectic solidification in commercial purity and ultra-high purity aluminium-si I icon alloys, with and without strontium additions, was examined by a quenching technique. In the commercial unmodified alloy, nucleation was prolific while in the high-purity unmodified alloy few eutectic grains nucleated. The addition of strontium to the commercial alloy reduced the number of eutectic grains that nucleated. Addition of strontium to the high-purity alloy did not significantly alter nucleation. It is concluded that commercial purity alloys contain a large number of potent nuclei that are susceptible to poisoning by impurity modification. The flake-to-fibre transition that occurs with impurity modification is shown to be independent of any change in eutectic nucleation mode and frequency. (C) 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional vaccines consisting of whole attenuated micro-organisms. or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection. adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity. and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic. and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system. incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore. mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n early 2001 there was a dramatic decline in the availability of heroin in New South Wales (NSW), Australia, where previously heroin had been readily available at a low price and high purity.1 The decline was confirmed by Australia's strategic early warning system, which revealed a reduction in heroin supply across Australia and a considerable increase in price,2 particularly from January to April 2001. This "heroin shortage" provided a natural experiment in which to examine the effect of substantial changes in price and availability on injecting drug use and its associated harms in Australia's largest heroin market,2 a setting in which harm reduction strategies were widely used. Publicly funded needle and syringe programmes were introduced to Australia in 1987, and methadone maintenance programmes, which were established in the 1970s, were significantly expanded in 1985 and again in 1999.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High purity Mg-Al type alloys have a naturally fine grain size compared to commercial purity alloys with the same basic composition. This is referred to as native grain refinement. It is shown that native grain refinement occurs only in magnesium alloys containing aluminium. The mechanism is attributed to the Al4C3 particles existing in these alloys. (c) 2005 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work studied the effect of the impurity iron and the alloying elements aluminium and zinc in single-phase substrate magnesium alloys on the corrosion resistance of the alloys after anodisation. It was found that increasing zinc content (0-2%) led to increased corrosion resistance of an anodised single-phase Mg-Zn alloy. The addition of Al lowered the corrosion resistance of an anodised commercial purity Mg-Al single-phase alloy, whereas the same addition was found to be beneficial to the corrosion resistance of an anodised high purity Mg-Al single-phase alloy. Heat-treatment made the substrate Mg-Al and Mg-Zn alloys more uniform and hence improved the corrosion resistance of the alloys after anodisation. The detrimental effect of iron impurity on corrosion performance of the unanodised substrate single-phase magnesium alloys was inherited by the anodised alloys. The corrosion resistance of the anodised Mg alloys was found to be closely correlated with the corrosion performance of the unanodised as-cast Mg alloys. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Double- walled carbon nanotubes (DWNTs) were synthesized used carbon black as the dot carbon source by a semi-continuous hydrogen arc discharge process. High-resolution transmission electron microscopy (HRTEM) observations revealed that most of the tubes were DWNTs with outer and inner diameters in the range of 2.67 - 4 nm and 1.96 - 3.21 nm, respectively. Most of the DWNTs were in a bundle form of about 10 - 30 nm in diameter with high purity ( about 70%) from thermal gravimetric analysis (TGA), resonant laser Raman spectroscopy, scanning electron microscopy (SEM) and TEM characterizations. It was found that carbon black as the dot carbon source could be easy controlled to synthesize one type of nanotube. A simple process combining oxidation and acid treatment to purify the DWNT bundles was used without damaging the bundles. The structure of carbon black, as the key element for influencing purity, bundle formation and purification of DWNTs, is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is an urgent need for high purity, single chain, fully functional Eph/ephrin membrane proteins. This report outlines the pTIg-BOS-Fc vector and purification approach resulting in rapid increased production of fully functional single chain extracellular proteins that were isolated with high purity and used in structure-function analysis and pre-clinical studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manganese is a grain refiner for high purity Mg-3%Al, Mg-6%Al, Mg-9%Al, and commercial AZ31 (Mg-3%Al-1%Zn) alloys when introduced in the form of an Al-60%Mn master alloy splatter but the use of pure Mn flakes and ALTAB (TM) Mn75 tablets shows no grain refinement. Long time holding of the melt at 730 degrees C leads to an increase in grain size. The mechanism is attributed to the presence of all epsilon-AlMn phase (hexagonal close-packed) in the master alloy splatter. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Niobium pentoxide reacts actively with concentrate NaOH solution under hydrothermal conditions at as low as 120 degrees C. The reaction ruptures the corner-sharing of NbO7 decahedra and NbO6 octahedra in the reactant Nb2O5, yielding various niobates, and the structure and composition of the niobates depend on the reaction temperature and time. The morphological evolution of the solid products in the reaction at 180 degrees C is monitored via SEM: the fine Nb2O5 powder aggregates first to irregular bars, and then niobate fibers with an aspect ratio of hundreds form. The fibers are microporous molecular sieve with a monoclinic lattice, Na2Nb2O6 center dot(2)/3H2O. The fibers are a metastable intermediate of this reaction, and they completely convert to the final product NaNbO3 Cubes in the prolonged reaction of 1 h. This study demonstrates that by carefully optimizing the reaction condition, we can selectively fabricate niobate structures of high purity, including the delicate microporous fibers, through a direct reaction between concentrated NaOH solution and Nb2O5. This synthesis route is simple and suitable for the large-scale production of the fibers. The reaction first yields poorly crystallized niobates consisting of edge-sharing NbO6 octahedra, and then the microporous fibers crystallize and grow by assembling NbO6 octahedra or clusters of NbO6 octahedra and NaO6 units. Thus, the selection of the fibril or cubic product is achieved by control of reaction kinetics. Finally, niobates with different structures exhibit remarkable differences in light absorption and photoluminescence properties. Therefore, this study is of importance for developing new functional materials by the wet-chemistry process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enzymatically active Delta(5)-3-ketosteroid isomerase (KSI) protein with a C-terminus his(6)-tag was produced following insoluble expression using Escherichia coli. A simple, integrated process was used to extract and purify the target protein. Chemical extraction was shown to be as effective as homogenization at releasing the inclusion body proteins from the bacteria] cells, with complete release taking less than 20 min. An expanded bed adsorption (EBA) column utilizing immobilized metal affinity chromatography (IMAC) was then used to purify the denatured KSI-(His(6)) protein directly from the chemical extract. This integrated process greatly simplifies the recovery and purification of inclusion body proteins by removing the need for mechanical cell disruption, repeated inclusion body centrifugation, and difficult clarification operations. The integrated chemical extraction and EBA process achieved a very high purity (99%) and recovery (89%) of the KSI-(His(6)), with efficient utilization of the adsorbent matrix (9.74 mg KSI-(His(6))/mL adsorbent). Following purification the protein was refolded by dilution to obtain the biologically active protein. Seventy-nine percent of the expressed KSI-(His(6)) protein was recovered as enzymatically active protein with the described extraction, purification, and refolding process. In addition to demonstrating the operation of this intensified inclusion body process, a plate-based concentration assay detecting KSI-(His(6)) is validated. The intensified process in this work requires minimal optimization for recovering novel his-tagged proteins, and further improves the economic advantage of E. coli as a host organism. (c) 2006 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The corrosion performance of anodised magnesium and its alloys, such as commercial purity magnesium (CP-Mg) and high-purity magnesium (HP-Mg) ingots, magnesium alloy ingots of MEZ, ZE41, AM60 and AZ91D and diecast AM60 (AM60-DC) and AZ91D (AZ91D-DC) plates, was evaluated by salt spray and salt immersion testing. The corrosion resistance was in the sequential order: AZ91D approximate to AM60 approximate to MEZ >= AZ91D-DC >= AM60-DC > HP-Mg > ZE41 > CP-Mg. It was concluded the corrosion resistance of an anodised magnesium alloy was determined by the corrosion performance of the substrate alloy due to the porous coating formed on the substrate alloy acting as a simple corrosion barrier. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coherent Ge(Si)/Si(001) quantum dot islands grown by solid source molecular beam epitaxy at a growth temperature of 700degreesC were investigated using transmission electron microscopy working at 300 kV. The [001] zone-axis bright-field diffraction contrast images of the islands show strong periodicity with the change of the TEM sample substrate thickness and the period is equal to the effective extinction distance of the transmitted beam. Simulated images based on finite element models of the displacement field and using multi-beam dynamical diffraction theory show a high degree of agreement. Studies for a range of electron energies show the power of the technique for investigating composition segregation in quantum dot islands. (C) 2003 Elsevier B.V. All rights reserved.