5 resultados para HEPES SIMPLEX

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative stability and magnitude of genetic and environmental effects underlying major dimensions of adolescent personality across time were investigated. The Junior Eysenck Personality Questionnaire was administered to over 540 twin pairs at ages 12, 14 and 16 years. Their personality scores were analyzed using genetic simplex modeling which explicitly took into account the longitudinal nature of the data. With the exception of the dimension lie, multivariate model fitting results revealed that familial aggregation was entirely explained by additive genetic effects. Results from simplex model fitting suggest that large proportions of the additive genetic variance observed at ages 14 and 16 years could be explained by genetic effects present at the age of 12 years. There was also evidence for smaller but significant genetic innovations at 14 and 16 years of age for male and female neuroticism, at 14 years for male extraversion, at 14 and 16 years for female psychoticism, and at 14 years for male psychoticism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 1 diabetes (TID) susceptibility locus, IDDM8, has been accurately mapped to 200 kilobases at the terminal end of chromosome 6q27. This is within the region which harbours a cluster of three genes encoding proteasome subunit beta 1 (PMSB1), TATA-box binding protein (TBP) and a homologue of mouse programming cell death activator 2 (PDCD2). In this study, we evaluated whether these genes contribute to TID susceptibility using the transmission disequilibrium test of the data set from 114 affected Russian simplex families. The A allele of the G/A1180 single nucleotide polymorphism (SNP) at the PDCD2 gene, which was significant in its preferential transfer from parents to diabetic children (75 transmissions vs. 47 non-transmissionS, x(2) = 12.85, P corrected = 0.0038), was found to be associated with T1D. G/A1180 dimorphism and two other SNPs, C/T771 TBP and G/T(-271) PDCD2, were shown to share three common haplotypes, two of which (A-T-G and A-T-T) have been associated with higher development risk of TID. The third haplotype (G-T-G) was related to having a lower risk of disease. These findings suggest that the PDCD2 gene is a likely susceptibility gene for TID within IDDM8. However, it was not possible to exclude the TBP gene from being another putative susceptibility gene in this region. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background. Genital ulcer disease (GUD) is commonly caused by pathogens for which suitable therapies exist, but clinical and laboratory diagnoses may be problematic. This collaborative project was undertaken to address the need for a rapid, economical, and sensitive approach to the detection and diagnosis of GUD using noninvasive techniques to sample genital ulcers. Methods. The genital ulcer disease multiplex polymerase chain reaction (GUMP) was developed as an inhouse nucleic acid amplification technique targeting serious causes of GUD, namely, herpes simplex viruses (HSVs), Haemophilus ducreyi, Treponema pallidum, and Klebsiella species. In addition, the GUMP assay included an endogenous internal control. Amplification products from GUMP were detected by enzyme linked amplicon hybridization assay (ELAHA). Results. GUMP-ELAHA was sensitive and specific in detecting a target microbe in 34.3% of specimens, including 1 detection of HSV-1, three detections of HSV-2, and 18 detections of T. pallidum. No H. ducreyi has been detected in Australia since 1998, and none was detected here. No Calymmatobacterium ( Klebsiella) granulomatis was detected in the study, but there were 3 detections during ongoing diagnostic use of GUMP-ELAHA in 2004 and 2005. The presence of C. granulomatis was confirmed by restriction enzyme digestion and nucleotide sequencing of the 16S rRNA gene for phylogenetic analysis. Conclusions. GUMP-ELAHA permitted comprehensive detection of common and rare causes of GUD and incorporated noninvasive sampling techniques. Data obtained by using GUMP-ELAHA will aid specific treatment of GUD and better define the prevalence of each microbe among at-risk populations with a view to the eradication of chancroid and donovanosis in Australia.