2 resultados para HEALING RESPONSE
em University of Queensland eSpace - Australia
Resumo:
Coronary and peripheral artery bypass grafting is commonly used to relieve the symptoms of vascular deficiencies, but the Supply Of autologous artery or vein may not be sufficient or suitable for multiple bypass or repeat procedures, necessitating the use of other materials. Synthetic materials are suitable for large bore arteries but often thrombose when used in smaller arteries. Suitable replacement grafts must have appropriate characteristics, including resistance to infection, low immunogenicity and good biocompatability and thromboresistance, with appropriate mechanical and physiological properties and cheap and fast manufacture. Current avenues of graft development include coating synthetic grafts with either biological chemicals or cells with anticoagulatory properties. Matrix templates or acellular tubes of extracellular matrix (such as collagen) may be coated or infiltrated with cultured cells. Once placed into the artery, these grafts may become colonised by host cells and gain many of the properties of normal artery. Tissue-engineered blood vessels may also be formed from layers of human vascular cells grown in culture. These engineered vessels have many of the characteristics of arteries formed in vivo. Artificial arteries may be also be derived from peritoneal granulation tissue in body bioreactors by adapting the body's natural wound healing response to produce a hollow tube. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
Early to mid-term fetuses heal cutaneous incisional wounds without scars; however, fetal response to burn injury has not been ascertained. We present a fetal model of thermal injury and subsequent analysis of fetal and lamb response to burn injury. A reproducible deep dermal burn injury was created in the fetus by application of water at 66 degrees C for 7 seconds, and at 82 degrees C for 10 seconds to the lamb. Macroscopically, the area of fetal scald was undetectable from day 7 post injury, while all lamb scalds were readily identified and eventually healed with scarring. Using a five-point histopathology scoring system for alteration in tissue morphology, differences were detected between control and scalded skin at all stages in lamb postburn, but no difference was detected in the fetal model after day 7. There were also large differences in content of alpha-smooth muscle actin and transforming growth factor-beta 1 between control and scalded lamb and these differences were statistically significant at day 14 (P < 0.01). This novel model of fetal and lamb response to deep dermal injury indicates that the fetus heals a deep burn injury in a scarless fashion. Further elucidation of this specific fetal process of burn injury repair may lead to improved outcome for patients with burn injury.