20 resultados para HDFS bottleneck
em University of Queensland eSpace - Australia
Resumo:
Market-based transmission expansion planning gives information to investors on where is the most cost efficient place to invest and brings benefits to those who invest in this grid. However, both market issue and power system adequacy problems are system planers’ concern. In this paper, a hybrid probabilistic criterion of Expected Economical Loss (EEL) is proposed as an index to evaluate the systems’ overall expected economical losses during system operation in a competitive market. It stands on both investors’ and planner’s point of view and will further improves the traditional reliability cost. By applying EEL, it is possible for system planners to obtain a clear idea regarding the transmission network’s bottleneck and the amount of losses arises from this weak point. Sequentially, it enables planners to assess the worth of providing reliable services. Also, the EEL will contain valuable information for moneymen to undertake their investment. This index could truly reflect the random behaviors of power systems and uncertainties from electricity market. The performance of the EEL index is enhanced by applying Normalized Coefficient of Probability (NCP), so it can be utilized in large real power systems. A numerical example is carried out on IEEE Reliability Test System (RTS), which will show how the EEL can predict the current system bottleneck under future operational conditions and how to use EEL as one of planning objectives to determine future optimal plans. A well-known simulation method, Monte Carlo simulation, is employed to achieve the probabilistic characteristic of electricity market and Genetic Algorithms (GAs) is used as a multi-objective optimization tool.
Resumo:
The Indo-West Pacific is characterized by extraordinary marine species diversity. The evolutionary mechanisms responsible for generating this diversity remain puzzling, but are often linked to Pleistocene sea level fluctuations. The impact of these sea level changes on the population genetic architecture of the estuarine fish Lates calcarifer are investigated via a natural experiment in a region of the Indo-West Pacific known to have undergone considerable change during the Pleistocene. L. calcarifer, a coastline-restricted catadromous teleost, provides an excellent model for studying the effects of sea level change as its habitat requirements potentially make it sensitive to the region's physical history. Evidence was found for a large phylogenetic break (4% mtDNA control region; 0.47% ATPase 6 and 8) either side of the Torres Strait, which separates the Western Pacific and Indian Oceans, although some mixing of the clades was evident. This suggests clinal secondary introgression of the clades via contemporary gene flow. Further, populations on Australia's east coast appear to have passed through a bottleneck. This was linked to the historical drying of the Great Barrier Reef coastal lagoon, which resulted in a significant loss of habitat and forced retreat into isolated refugia. These results suggest that historical eustatic changes have left a significant imprint on the molecular diversity within marine species as well as among them in the Indo-West Pacific.
Resumo:
The effect that the difficulty of the discrimination between task-relevant and task-irrelevant stimuli has on the relationship between skin conductance orienting and secondary task reaction time (RT) was examined. Participants (N = 72) counted the number of longer-than-usual presentations of one shape (task-relevant) and ignored presentations of another shape (task-irrelevant). The difficulty of discriminating between the two shapes varied across three groups (low, medium, and high difficulty). Simultaneous with the primary counting task, participants performed a secondary RT task to acoustic probes presented 50, 150, and 2000 ms following shape onset. Skin conductance orienting was larger, and secondary RT at the 2000 ms probe position was slower during task-relevant shapes than during task-irrelevant shapes in the low-difficulty group. This difference declined as the discrimination difficulty was increased, such that there was no difference in the high-difficulty group. Secondary RT was slower during task-irrelevant shapes than during task-relevant shapes only in the medium-difficulty group-and only at the 150 ms probe position in the first half of the experiment. The close relationship between autonomic orienting and secondary RT at the 2000 ms probe position suggests that orienting reflects the resource allocation that results from the number of matching features between a stimulus input and a mental representation primed as significant.
Resumo:
Microsatellites or simple sequence repeats (SSRs) are ubiquitous in eukaryotic genomes. Single-locus SSR markers have been developed for a number of species, although there is a major bottleneck in developing SSR markers whereby flanking sequences must be known to design 5'-anchors for polymerase chain reaction (PCR) primers. Inter SSR (ISSR) fingerprinting was developed such that no sequence knowledge was required. Primers based on a repeat sequence, such as (CA)(n), can be made with a degenerate 3'-anchor, such as (CA)(8)RG or (AGC)(6)TY. The resultant PCR reaction amplifies the sequence between two SSRs, yielding a multilocus marker system useful for fingerprinting, diversity analysis and genome mapping. PCR products are radiolabelled with P-32 or P-33 via end-labelling or PCR incorporation, and separated on a polyacrylamide sequencing gel prior to autoradiographic visualisation. A typical reaction yields 20-100 bands per lane depending on the species and primer. We have used ISSR fingerprinting in a number of plant species, and report here some results on two important tropical species, sorghum and banana. Previous investigators have demonstrated that ISSR analysis usually detects a higher level of polymorphism than that detected with restriction fragment length polymorphism (RFLP) or random amplified polymorphic DNA (RAPD) analyses. Our data indicate that this is not a result of greater polymorphism genetically, but rather technical reasons related to the detection methodology used for ISSR analysis.
Resumo:
Recent progress in the production, purification, and experimental and theoretical investigations of carbon nanotubes for hydrogen storage are reviewed. From the industrial point of view, the chemical vapor deposition process has shown advantages over laser ablation and electric-arc-discharge methods. The ultimate goal in nanotube synthesis should be to gain control over geometrical aspects of nanotubes, such as location and orientation, and the atomic structure of nanotubes, including helicity and diameter. There is currently no effective and simple purification procedure that fulfills all requirements for processing carbon nanotubes. Purification is still the bottleneck for technical applications, especially where large amounts of material are required. Although the alkali-metal-doped carbon nanotubes showed high H-2 Weight uptake, further investigations indicated that some of this uptake was due to water rather than hydrogen. This discovery indicates a potential source of error in evaluation of the storage capacity of doped carbon nanotubes. Nevertheless, currently available single-wall nanotubes yield a hydrogen uptake value near 4 wt% under moderate pressure and room temperature. A further 50% increase is needed to meet U.S. Department of Energy targets for commercial exploitation. Meeting this target will require combining experimental and theoretical efforts to achieve a full understanding of the adsorption process, so that the uptake can be rationally optimized to commercially attractive levels. Large-scale production and purification of carbon nanotubes and remarkable improvement of H-2 storage capacity in carbon nanotubes represent significant technological and theoretical challenges in the years to come.
Resumo:
Much progress has been made on inferring population history from molecular data. However, complex demographic scenarios have been considered rarely or have proved intractable. The serial introduction of the South-Central American cane Load Bufo marinas in various Caribbean and Pacific islands involves four major phases: a possible genetic admixture during the first introduction, a bottleneck associated with founding, a transitory, population boom, and finally, a demographic stabilization. A large amount of historical and demographic information is available for those introductions and can be combined profitably with molecular data. We used a Bayesian approach to combine this information With microsatellite (10 loci) and enzyme (22 loci) data and used a rejection algorithm to simultaneously estimate the demographic parameters describing the four major phases of the introduction history,. The general historical trends supported by microsatellites and enzymes were similar. However, there was a stronger support for a larger bottleneck at introductions for microsatellites than enzymes and for a more balanced genetic admixture for enzymes than for microsatellites. Verb, little information was obtained from either marker about the transitory population boom observed after each introduction. Possible explanations for differences in resolution of demographic events and discrepancies between results obtained with microsatellites and enzymes were explored. Limits Of Our model and method for the analysis of nonequilibrium populations were discussed.
Resumo:
The two-node tandem Jackson network serves as a convenient reference model for the analysis and testing of different methodologies and techniques in rare event simulation. In this paper we consider a new approach to efficiently estimate the probability that the content of the second buffer exceeds some high level L before it becomes empty, starting from a given state. The approach is based on a Markov additive process representation of the buffer processes, leading to an exponential change of measure to be used in an importance sampling procedure. Unlike changes of measures proposed and studied in recent literature, the one derived here is a function of the content of the first buffer. We prove that when the first buffer is finite, this method yields asymptotically efficient simulation for any set of arrival and service rates. In fact, the relative error is bounded independent of the level L; a new result which is not established for any other known method. When the first buffer is infinite, we propose a natural extension of the exponential change of measure for the finite buffer case. In this case, the relative error is shown to be bounded (independent of L) only when the second server is the bottleneck; a result which is known to hold for some other methods derived through large deviations analysis. When the first server is the bottleneck, experimental results using our method seem to suggest that the relative error is bounded linearly in L.
Resumo:
Allozyme analysis was used to address the question of the source of the Australian populations of the monarch butterfly Danaus plexippus (L.). The study had three major aims: (1) To compare the levels of diversity of Australian and Hawaiian populations with potential source populations. (2) To determine whether eastern and western North American populations were sufficiently divergent for the Australian populations to be aligned to a source population. (3) To compare the differentiation among regions in Australia and North America to test the prediction of greater genetic structure in Australia, as a consequence of reduced migratory behaviour. The reverse was found, with F-ST values an order of magnitude lower in Australia than in North America. Predictably, Australian and Hawaiian populations had lower allelic diversity, but unexpected higher heterozygosity values than North American populations. It was not possible to assign the Australian populations to a definitive source, although the high levels of similarity of Australian populations to each other suggest a single colonization event. The possibility that the Australian populations have not been here long enough to reach equilibrium is discussed. (C) 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 75, 437-452.
Resumo:
The houbara bustard, Chlamydotis undulata, is a declining cryptic desert bird whose range extends from North Africa to Central Asia. Three subspecies are currently recognized by geographical distribution and morphology: C.u.fuertaventurae, C.u.undulata and C.u.macqueenii. We have sequenced 854 bp of mitochondrial control region from 73 birds to describe their population genetic structure with a particular sampling focus on the connectivity between C.u.fuertaventurae and C.u.undulata along the Atlantic seaboard of North Africa. Nucleotide and haplotypic diversity varied among the subspecies being highest in C.u.undulata, lowest in C.u.fuertaventurae and intermediate in C.u.macqueenii. C.u.fuertaventurae and C.u.undulata are paraphyletic and an average nucleotide divergence of 2.08% splits the later from C.u.macqueenii. We estimate that C.u.fuertaventurae and C.u.undulata split from C.u.macqueenii approximately 430 000 years ago. C.u.fuertaventurae and C.u.undulata are weakly differentiated (F-ST = 0.27, N-m = 1.3), indicative of a recent shared history. Archaeological evidence indicates that houbara bustards have been present on the Canary Islands for 130-170 000 years. However, our genetic data point to a more recent separation of C.u.fuertaventurae and C.u.undulata at around 20-25 000 years. Concordant archaeological, climatic opportunities for colonization and genetic data point to a scenario of: (i) initial colonization of the Canary Islands about 130 000 years ago; (ii) a period of secondary contact 19-30 000 years ago homogenizing any pre-existing genetic structure followed by; (iii) a period of relative isolation that persists today.
Resumo:
Sustainable forest restoration and management practices require a thorough understanding of the influence that habitat fragmentation has on the processes shaping genetic variation and its distribution in tree populations. We quantified genetic variation at isozyme markers and chloroplast DNA (cpDNA), analysed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in severely fragmented populations of Sorbus aucuparia (Rosaceae) in a single catchment (Moffat) in southern Scotland. Remnants maintain surprisingly high levels of gene diversity (H-E) for isozymes (H-E = 0.195) and cpDNA markers (H-E = 0.490). Estimates are very similar to those from non-fragmented populations in continental Europe, even though the latter were sampled over a much larger spatial scale. Overall, no genetic bottleneck or departures from random mating were detected in the Moffat fragments. However, genetic differentiation among remnants was detected for both types of marker (isozymes Theta(n) = 0.043, cpDNA Theta(c) = 0.131; G-test, P-value < 0.001). In this self-incompatible, insect-pollinated, bird-dispersed tree species, the estimated ratio of pollen flow to seed flow between fragments is close to 1 (r = 1.36). Reduced pollen-mediated gene flow is a likely consequence of habitat fragmentation, but effective seed dispersal by birds is probably helping to maintain high levels of genetic diversity within remnants and reduce genetic differentiation between them.
Resumo:
Genetic diversity and population structure were investigated across the core range of Tasmanian devils (Sarcophilus laniarius; Dasyuridae), a wide-ranging marsupial carnivore restricted to the island of Tasmania. Heterozygosity (0.386-0.467) and allelic diversity (2.7-3.3) were low in all subpopulations and allelic size ranges were small and almost continuous, consistent with a founder effect. Island effects and repeated periods of low population density may also have contributed to the low variation. Within continuous habitat, gene flow appears extensive up to 50 km (high assignment rates to source or close neighbour populations; nonsignificant values of pairwise F-ST), in agreement with movement data. At larger scales (150-250 km), gene flow is reduced (significant pairwise F-ST) but there is no evidence for isolation by distance. The most substantial genetic structuring was observed for comparisons spanning unsuitable habitat, implying limited dispersal of devils between the well-connected, eastern populations and a smaller northwestern population. The genetic distinctiveness of the northwestern population was reflected in all analyses: unique alleles; multivariate analyses of gene frequency (multidimensional scaling, minimum spanning tree, nearest neighbour); high self-assignment (95%); two distinct populations for Tasmania were detected in isolation by distance and in Bayesian model-based clustering analyses. Marsupial carnivores appear to have stronger population subdivisions than their placental counterparts.
Resumo:
While the feasibility of bottleneck-induced speciation is in doubt, population bottlenecks may still affect the speciation process by interacting with divergent selection. To explore this possibility, I conducted a laboratory speciation experiment using Drosophila pseudoobscura involving 78 replicate populations assigned in a two-way factorial design to both bottleneck (present vs. absent) and environment (ancestral vs. novel) treatments. Populations independently evolved under these treatments and were then tested for assortative mating and male mating success against their common ancestor. Bottlenecks alone did not generate any premating isolation, despite an experimental design that was conducive to bottleneck-induced speciation. Premating isolation also did not evolve in the novel environment treatment, neither in the presence nor absence of bottlenecks. However, male mating success was significantly reduced in the novel environment treatment, both as a plastic response to this environment and as a result of environment-dependent inbreeding effects in the bottlenecked populations. Reduced mating success of derived males will hamper speciation by enhancing the mating success of immigrant, ancestral males. Novel environments are generally thought to promote ecological speciation by generating divergent natural selection. In the current experiment, however, the novel environment did not cause the evolution of any premating isolation and it reduced the likelihood of speciation through its effects on male mating success.
Resumo:
Eastern curlews Numenius madagascariensis spending the nonbreeding season in eastern Australia foraged on three intertidal decapods: soldier crab Mictyris longicarpus, sentinel crab Macrophthalmus crassipes and ghost-shrimp Trypaea australiensis. Due to their ecology, these crustaceans were spatially segregated (=distributed in 'patches') and the curlews intermittently consumed more than one prey type. It was predicted that if the curlews behaved as intake rate maximizers, the time spent foraging on a particular prey (patch) would reflect relative availabilities of the prey types and thus prey-specific intake rates would be equal. During the mid-nonbreeding period (November-December), Mictyris and Macrophthalmus were primarily consumed and prey-specific intake rates were statistically indistinguishable (8.8 versus 10.1 kJ x min(-1)). Prior to migration (February), Mictyris and Trypaea were hunted and the respective intake rates were significantly different (8.9 versus 2.3 kJ x min(-1)). Time allocation to Trypaea-hunting was independent of the availability of Mictyris. Thus, consumption of Trypaea depressed the overall intake rate. Six hypotheses for consuming Trypaea before migration were examined. Five hypotheses: the possible error by the predator, prey specialization, observer overestimation of time spent hunting Trypaea, supplementary prey and the choice of higher quality prey due to a digestive bottleneck, were deemed unsatisfactory. The explanation for consumption of a low intake-rate but high quality prey (Trypaea) deemed plausible was diet optimisation by the Curlews in response to the pre-migratory modulation (decrease in size/processing capacity) of their digestive system. With a seasonal decrease in the average intake rate, the estimated intake per low tide increased from 1233 to 1508 kJ between the mid-nonbreeding and pre-migratory periods by increasing the overall time spent on the sandflats and the proportion of time spent foraging.
Resumo:
Complementing our recent work on subspace wavepacket propagation [Chem. Phys. Lett. 336 (2001) 149], we introduce a Lanczos-based implementation of the Faber polynomial quantum long-time propagator. The original version [J. Chem. Phys. 101 (1994) 10493] implicitly handles non-Hermitian Hamiltonians, that is, those perturbed by imaginary absorbing potentials to handle unwanted reflection effects. However, like many wavepacket propagation schemes, it encounters a bottleneck associated with dense matrix-vector multiplications. Our implementation seeks to reduce the quantity of such costly operations without sacrificing numerical accuracy. For some benchmark scattering problems, our approach compares favourably with the original. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Pine beauty moth, Panolis flammea (Denis & Schiffermuller), is a recent but persistent pest of lodgepole pine plantations in Scotland, but exists naturally at low levels within remnants and plantations of Scots pine. To test whether separate host races occur in lodgepole and Scots pine stands and to examine colonization dynamics, allozyme, randomly amplified polymorphic DNA (RAPD) and mitochondrial variation were screened within a range of Scottish samples. RAPD analysis indicated limited long distance dispersal (F-ST=0.099), and significant isolation by distance (P < 0.05); but that colonization between more proximate populations was often variable, from extensive to limited exchange. When compared with material from Germany, Scottish samples were found to be more diverse and significantly differentiated for all markers. For mtDNA, two highly divergent groups of haplotypes were evident, one group contained both German and Scottish samples and the other was predominantly Scottish. No genetic differentiation was evident between P. flammea populations sampled from different hosts, and no diversity bottleneck was observed in the lodgepole group. Indeed, lodgepole stands appear to have been colonized on multiple occasions from Scots pine sources and neighbouring populations on different hosts are close to panmixia.