2 resultados para HCI
em University of Queensland eSpace - Australia
Resumo:
This paper describes methods used to support collaboration and communication between practitioners, designers and engineers when designing ubiquitous computing systems. We tested methods such as “Wizard of Oz” and design games in a real domain, the dental surgery, in an attempt to create a system that is: affordable; minimally disruptive of the natural flow of work; and improves human-computer interaction. In doing so we found that such activities allowed the practitioners to be on a ‘level playing ground’ with designers and engineers. The findings we present suggest that dentists are willing to engage in detailed exploration and constructive critique of technical design possibilities if the design ideas and prototypes are presented in the context of their work practice and are of a resolution and relevance that allow them to jointly explore and question with the design time. This paper is an extension of a short paper submitted to the Participatory Design Conference, 2004.
Resumo:
The Operator Choice Model (OCM) was developed to model the behaviour of operators attending to complex tasks involving interdependent concurrent activities, such as in Air Traffic Control (ATC). The purpose of the OCM is to provide a flexible framework for modelling and simulation that can be used for quantitative analyses in human reliability assessment, comparison between human computer interaction (HCI) designs, and analysis of operator workload. The OCM virtual operator is essentially a cycle of four processes: Scan Classify Decide Action Perform Action. Once a cycle is complete, the operator will return to the Scan process. It is also possible to truncate a cycle and return to Scan after each of the processes. These processes are described using Continuous Time Probabilistic Automata (CTPA). The details of the probability and timing models are specific to the domain of application, and need to be specified using domain experts. We are building an application of the OCM for use in ATC. In order to develop a realistic model we are calibrating the probability and timing models that comprise each process using experimental data from a series of experiments conducted with student subjects. These experiments have identified the factors that influence perception and decision making in simplified conflict detection and resolution tasks. This paper presents an application of the OCM approach to a simple ATC conflict detection experiment. The aim is to calibrate the OCM so that its behaviour resembles that of the experimental subjects when it is challenged with the same task. Its behaviour should also interpolate when challenged with scenarios similar to those used to calibrate it. The approach illustrated here uses logistic regression to model the classifications made by the subjects. This model is fitted to the calibration data, and provides an extrapolation to classifications in scenarios outside of the calibration data. A simple strategy is used to calibrate the timing component of the model, and the results for reaction times are compared between the OCM and the student subjects. While this approach to timing does not capture the full complexity of the reaction time distribution seen in the data from the student subjects, the mean and the tail of the distributions are similar.