29 resultados para Gut ischemia
em University of Queensland eSpace - Australia
Resumo:
Ischemia-reperfusion (I/R) injury is a common clinical event with the potential to seriously affect, and sometimes kill, the patient. Interruption of blood supply causes ischemia, which rapidly damages metabolically active tissues. Paradoxically, restoration of blood flow to the ischemic tissues initiates a cascade of pathology that leads to additional cell or tissue injury. I/R is a potent inducer of complement activation that results in the production of a number of inflammatory mediators. The use of specific inhibitors to block complement activation has been shown to prevent local tissue injury after I/R. Clinical and experimental studies in gut, kidney, limb, and liver have shown that I/R results in local activation of the complement system and leads to the production of the complement factors C3a, C5a, and the membrane attack complex. The novel inhibitors of complement products may find wide clinical application because there are no effective drug therapies currently available to treat I/R injuries.
Resumo:
In a search for potential biocontrol agents for Acacia melanoxylon R. Br. (Mimosaceae), larvae of the beetle Diplocoelus dilataticollis Lea (Coleoptera; Biphyllidae) were found within damaged seeds of A. melanoxylon. The gut contents of larvae and adults were examined to determine whether their diet included seeds, in apparent contradiction to the known mycophagous diet of members of this family of beetles. Calcofluor M2R White, a plant cell-wall staining optical brightener was used to differentiate between plant cell fragments and fungal tissue in the gut content smears. Gut contents of adults of a known seed predator of A. melanoxylon, a weevil of the genus Melanterius, were examined in the same way to provide a benchmark. The gut contents of D. dilataticollis differed from those of Melanterius sp. Fungal structures and microbes were found in the gut of D. dilataticollis, in contrast to plant cell fragments found in the gut of the weevil and from scrapes made directly from seeds. We conclude that larvae of D. dilataticollis feed primarily on fungi associated with damaged seed and therefore may not be the proximate cause of seed damage.
Resumo:
Background: Postsystolic thickening (PST) of ischemic myocardial segments has been reported to account for the characteristic heterogeneity or regional asynchrony of myocardial wall motion during acute ischemia. Hypothesis: Postsystolic thickening detected by Doppler myocardial imaging (DMI) could be a useful clinical index of myocardial viability or peri-infarction viability in patients with myocardial infarction (MI). Methods: Doppler myocardial imaging was recorded at each stage of a standard dobutamine stress echocardiogram (DSE) in 20 patients (16 male, 60 +/- 13 years) with an NIT in the territory of the left anterior descending artery. Myocardial velocity data were measured in the interventricular septum and apical inferior segment of the MI territory. Postsystolic thickening was identified if the absolute velocity of PST was higher than peak systolic velocity in the presence of either a resting PST > 2.0 cm/s or if PST doubled at low-dose dobutamine infusion. Results: Doppler myocardial imaging data could be analyzed in 38 ischemic segments (95%), and PST was observed in 21 segments (55%), including 3 segments showing PST only at low-dose dobutamine infusion. There was no significant difference of baseline wall motion score index (2.1 +/- 0.3 vs. 2.1 +/- 0.6, p = 0.77) or peak systolic velocity (1.1 +/- 1.1 vs. 1.9 +/- 2.0 cm/s, p = 0.05) between segments with and without PST Peri-infarction ischemia or viability during DSE was more frequently observed in segments with PST than in those without (86 vs. 24%, p < 0.05). The sensitivity and specificity of PST for prediction of peri-infarction viability or ischemia was 82 and 81%, respectively. Conclusions: Postsystolic thickening in the infarct territory detected by DMI is closely related with peri-infarction ischemia or viability at DSE.
Resumo:
Purpose: To determine whether the localization of retinal glutamate transporters is affected by retinal ischaemia and whether their ability to transport glutamate decreases with the progression of ischemic retinal and optic nerve degeneration. Methods: Retinal ischemia was induced in rats by acutely increasing the intraocular pressure (IOP, 110 mmHg/60 min). Reperfusion was permitted for periods up to 60 days post-ischemia. Functional evaluation was performed by monitoring the pupil light reflexes (PLRs) and electroretinograms (flash, flicker ERG and oscillatory potentials). Glutamate transporter localization and D-aspartate (glutamate analogue) uptake were assessed by immunohistochemistry. Results: Intense immunoreactivity for the retinal glutamate transporters (GLAST, GLT1, EAAC1 and EAAT5) was observed at all time points after the insult, despite severe retinal degeneration. D-aspartate was also normally accumulated in the ischemic retinas. Ten days post-operatively the PLR ratio (ratio = indirect/direct PLR = 34 +/- 7(.)5%) was significantly less than the pre-operative value (pre-op = 76(.)7 +/- 2 (.)6%, p < 0(.)05). However, 25 and 35 days post-operatively PLR ratios did not differ significantly from pre-operative values (44(.)4 +/- 6(.)9 and 53(.)8 +/- 9(.)6%, p > 0(.)05). Forty-five and 60 days post-operatively the PLR ratio declined again and was significantly lower than the pre-operative value (33(.)8 + 8(.)7 and 26(.)2 + 8(.)9%, p < 0(.)05). Statistical analysis revealed that all tested ERG components had significantly higher values at 32, but not at 42 and 58 days post-operatively when compared to the first time point recorded post-operatively (10 days). Conclusions: While retinal glutamate transport is compromised during an acute ischemic insult, consequent retinal recovery and degeneration are not due to a change in the excitatory amino acid transporter localization or D-aspartate (glutamate analogue) uptake. Rat retina and optic nerve are capable of spontaneous, but temporary, functional recovery after an acute ischemic insult. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Endothelial dysfunction in ischemic acute renal failure (IARF) has been attributed to both direct endothelial injury and to altered endothelial nitric oxide synthase ( eNOS) activity, with either maximal upregulation of eNOS or inhibition of eNOS by excess nitric oxide ( NO) derived from iNOS. We investigated renal endothelial dysfunction in kidneys from Sprague-Dawley rats by assessing autoregulation and endothelium-dependent vasorelaxation 24 h after unilateral ( U) or bilateral ( B) renal artery occlusion for 30 (U30, B30) or 60 min (U60, B60) and in sham-operated controls. Although renal failure was induced in all degrees of ischemia, neither endothelial dysfunction nor altered facilitation of autoregulation by 75 pM angiotensin II was detected in U30, U60, or B30 kidneys. Baseline and angiotensin II-facilitated autoregulation were impaired, methacholine EC50 was increased, and endothelium-derived hyperpolarizing factor ( EDHF) activity was preserved in B60 kidneys. Increasing angiotensin II concentration restored autoregulation and increased renal vascular resistance ( RVR) in B60 kidneys; this facilitated autoregulation, and the increase in RVR was abolished by 100 mu M furosemide. Autoregulation was enhanced by N-omega-nitro-L-arginine methyl ester. Peri-ischemic inhibition of inducible NOS ameliorated renal failure but did not prevent endothelial dysfunction or impaired autoregulation. There was no significant structural injury to the afferent arterioles with ischemia. These results suggest that tubuloglomerular feedback is preserved in IARF but that excess NO and probably EDHF produce endothelial dysfunction and antagonize autoregulation. The threshold for injury-producing, detectable endothelial dysfunction was higher than for the loss of glomerular filtration rate. Arteriolar endothelial dysfunction after prolonged IARF is predominantly functional rather than structural.
Resumo:
The scabies mite, Sarcoptes scabiei, is the causative agent of scabies, a disease that is common among disadvantaged populations and facilitates streptococcal infections with serious sequelae. Previously, we encountered large families of genes encoding paralogues of house dust mite protease allergens with their catalytic sites inactivated by mutation (scabies mite inactivated protease paralogues [SMIPPs]). We postulated that SMIPPs have evolved as an adaptation to the parasitic lifestyle of the scabies mite, functioning as competitive inhibitors of proteases involved in the host–parasite interaction. To propose testable hypotheses for their functions, it is essential to know their locations in the mite. Here we show by immunohistochemistry that SMIPPs exist in two compartments: 1) internal to the mite in the gut and 2) external to the mite after excretion from the gut in scybala (fecal pellets). SMIPPs may well function in both of these compartments to evade host proteases.
Resumo:
Vascular endothelial growth factor-B (VEGF-B) is closely related to VEGF-A, an effector of blood vessel growth during development and disease and a strong candidate for angiogenic therapies. To further study the in vivo function of VEGF-B, we have generated Vegfb knockout mice (Vegfb(-/-)). Unlike Vegfa knockout mice, which die during embryogenesis, Vegfb(-/-) mice are healthy and fertile. Despite appearing overtly normal, Vegfb(-/-) hearts are reduced in size and display vascular dysfunction after coronary occlusion and impaired recovery from experimentally induced myocardial ischemia. These findings reveal a role for VEGF-B in the development or function of coronary vasculature and suggest potential clinical use in therapeutic angiogenesis. The full text of this article is available at http://www.circresaha.org.
Resumo:
Aims: An early adenocarcinoma of the ascending colon was confined to a mass of gut-associated lymphoid tissue (GALT). The first description of an adenocarcinoma of colon differentiating as dome epithelium is presented. Methods and results: A plaque-like carcinoma was identified opposite the ileocaecal valve in an asymptomatic 56-year-old man with a family history of colorectal cancer. Malignant epithelium was confined to a mass of GALT filling but limited to the submucosa, Characterization of the neoplasm was undertaken by means of mucin histochemistry, immunohistochemistry, electron microscopy and assessment of DNA microsatellite instability status. The malignant epithelium comprised well differentiated columnar cells with a microvillous brush border and expressing MUC1, but no goblet cells or expression of MUC2. The demonstration of focal clusters of intraepithelial B-lymphocytes supported the presence of functioning M-cells within the malignant neoplasm. The cancer was DNA microsatellite stable despite the finding of tumour infiltrating lymphocytes. Conclusions: There is evidence for the origin of colorectal neoplasia from dome epithelium in both experimental models and microreconstruction studies of early adenomas in nonpolypotic human colorectal mucose, It is suggested that the lymphocyte-rich subset of colorectal cancer that expresses MUC1 but not MUC2 may be differentiating as dome epithelium of gut-associated lymphoid tissue.