5 resultados para Gray water
em University of Queensland eSpace - Australia
Resumo:
Aims: To evaluate the thermal responses and weight gain in preterm infants nursed in a cot on a heated, water-filled mattress (HWM) compared with infants receiving care in an air-heated incubator and to compare mothers' stress, anxiety levels and perceptions of their infants in the two groups. Methods: Stable preterm infants weighing 1300 to 1500 g were enrolled, being randomly allocated to either the study group (n = 41) receiving care in a cot on an HWM, or the control group ( n = 33) receiving incubator care. The mean daily body temperature and episodes of cold stress and hyperthermia were recorded. Weight gain (g kg(-1) body weight d(-1)) was also calculated. The mothers completed questionnaires on their perceptions of their infants, and their anxiety and stress levels before randomization, and 2 - 3 wk later during the trial. Results: The mean body temperature was similar for the first week of the trial ( study group 36.9degreesC vs controls 36.9degreesC). There were no significant differences in the incidence of cold stress, while more hyperthermic episodes were seen in the study group ( p = 0.03). There were no significant differences in weight gain during the first ( study group 21.4 g vs controls 19.6 g) or second weeks of the trial ( study group 20.5 g vs controls 19.2 g). Neonatal morbidity did not differ between the groups. There were no differences in mothers' perceptions of their babies, or feelings of stress or anxiety. Conclusion: There were no differences between infants cot-nursed on an HWM and those receiving incubator care, with the exception of episodes of high temperature. The results suggest that the HWM may be used safely for low-weight preterm infants.
Resumo:
The distribution of 19 major virulence genes and the presence of plasmids were surveyed in 141 Legionella pneumophila serogroup (SG) 1 isolates from patients and water in Queensland, Australia. The results showed that 16 of the virulence genes examined were present in all isolates, suggesting that they are life-essential genes for isolates in the environment and host cells. The 65 kb pathogenicity island identified originally in strain Philadelphia-1(T) was detected more frequently in isolates from water (44.2 %) than in those from patients (2.7 %), indicating that the 65 kb DNA fragment may aid the survival of L. pneumophila in the sampled environment. However, the low frequency of the 65 kb fragment in isolates from patients suggests that the pathogenicity island may not be necessary for L. pneumophila to cause disease. Plasmids were not detected in the L. pneumophila SG1 isolates from patients or water studied. There was an association of both lvh and rtxA with the virulent and predominant genotype detected by amplified fragment length polymorphism, termed AF1, whereas the avirulent common isolate from water termed AF16 did not have lvh or rtxA genes, with the exception of one isolate with rtxA. It was found that a PCR detection test strategy with lvh and rtxA as pathogenesis markers would be useful for determining the infection potential of an isolate.
Resumo:
Brain anatomy is characterized by dramatic growth from the end of the second trimester through the neonatal stage. The characterization of normal axonal growth of the white matter tracts has not been well-documented to date and could provide important clues to understanding the extensive inhomogeneity of white matter injuries in cerebral palsy (CP) patients. However, anatomical studies of human brain development during this period are surprisingly scarce and histology-based atlases have become available only recently. Diffusion tensor magnetic resonance imaging (DTMRI) can reveal detailed anatomy of white matter. We acquired diffusion tensor images (DTI) of postmortem fetal brain samples and in vivo neonates and children. Neural structures were annotated in two-dimensional (2D) slices, segmented, measured, and reconstructed three-dimensionally (3D). The growth status of various white matter tracts was evaluated on cross-sections at 19-20 gestational weeks, and compared with 0-month-old neonates and 5- to 6-year-old children. Limbic, commissural, association, and projection white matter tracts and gray matter structures were illustrated in 3D and quantitatively characterized to assess their dynamic changes. The overall pattern of the time courses for the development of different white matter is that limbic fibers develop first and association fibers last and commissural and projection fibers are forming from anterior to posterior part of the brain. The resultant DTNIRI-based 3D human brain data will be a valuable resource for human brain developmental study and will provide reference standards for diagnostic radiology of premature newborns. (c) 2006 Elsevier Inc. All rights reserved.