253 resultados para Gpi-anchored Protein

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the process of internalization of molecules from the extracellular milieu, a cell uses multiple endocytic pathways, consequently generating different endocytic vesicles. These primary endocytic vesicles are targeted to specific destinations inside the cell. Here, we show that GPI-anchored proteins are internalized by an Arf6-independent mechanism into GPI-anchored protein-enriched early endosomal compartments (GEECs). Internalized GPI-anchored proteins and the fluid phase are first visualized in GEECs that are acidic, primary endocytic structures, negative for early endosomal markers, Rab4, Rab5, and early endosome antigen (EEA)1. They subsequently acquire Rab5 and EEA1 before homotypic fusion with other GEECs, and heterotypic fusion with endosomes containing cargo from the clathrin-dependent endocytic pathway. Although, the formation of GEECs is unaffected by inhibition of Rab5 GTPase and phosphatidylinositol-3'-kinase (PI3K) activity, their fusion with sorting endosomes is dependent on both activities. Overexpression of Rab5 reverts PI3K inhibition of fusion, providing evidence that Rab5 effectors play important roles in heterotypic fusion between the dynamin-independent GEECs and clathrin- and dynamin-dependent sorting endosomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we studied the fate of endocytosed glycosylphosphatidyl inositol anchored proteins (GPI-APs) in mammalian cells, using aerolysin, a bacterial toxin that binds to the GPI anchor, as a probe. We find that GPI-APs are transported down the endocytic pathway to reducing late endosomes in BHK cells, using biochemical, morphological and functional approaches. We also find that this transport correlates with the association to raft-like membranes and thus that lipid rafts are present in late endosomes (in addition to the Golgi and the plasma membrane). In marked contrast, endocytosed GPI-APs reach the recycling endosome in CHO cells and this transport correlates with a decreased raft association. GPI-APs are, however, diverted from the recycling endosome and routed to late endosomes in CHO cells, when their raft association is increased by clustering seven or less GPI-APs with an aerolysin mutant. We conclude that the different endocytic routes followed by GPI-APs in different cell types depend on the residence time of GPI-APs in lipid rafts, and hence that raft partitioning regulates GPI-APs sorting in the endocytic pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Endocytosis of cell-surface proteins via specific pathways is critical for their function. We show that multiple glycosylphosphatidylinositol-anchored proteins (GPI-APs) are endocytosed to the recycling endosomal compartment but not to the Golgi via a nonclathrin, noncaveolae mediated pathway. GPI anchoring is a positive signal for internalization into rab5-independent tubular-vesicular endosomes also responsible for a major fraction of fluid-phase uptake; molecules merely lacking cytoplasmic extensions are not included. Unlike the internalization of detergent-resistant membrane (DRM)-associated interleukin 2 receptor, endocytosis of DRM-associated GPI-APs is unaffected by inhibition of RhoA or dynamin 2 activity. Inhibition of Rho family GTPase cdc42, but not Rac1, reduces fluid-phase uptake and redistributes GPI-APs to the clathrin-mediated pathway. These results describe a distinct constitutive pinocytic pathway, specifically regulated by cdc42.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clathrin-coated pits and caveolae are two of the most recognizable features of the plasma membrane of mammalian cells. While our understanding of the machinery regulating and driving clathrin-coated pit-mediated endocytosis has progressed dramatically, including the elucidation of the structure of individual components and partial in vitro reconstitution, the role of caveolae as alternative endocytic carriers still remains elusive 50 years after their discovery. However, recent work has started to provide new insights into endocytosis by caveolae and into apparently related pathways involving lipid raft domains. These pathways, distinguished by their exquisite sensitivity to cholesterol-sequestering agents, can involve caveolae but also exist in cells devoid of caveolins and caveolae. This review examines the current evidence for the involvement of rafts and caveolae in endocytosis and the molecular players involved in their regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While our understanding of lipid microdomains has advanced in recent years, many aspects of their formation and dynamics are still unclear. In particular, the molecular determinants that facilitate the partitioning of integral membrane proteins into lipid raft domains are yet to be clarified. This review focuses on a family of raft-associated integral membrane proteins, termed flotillins, which belongs to a larger class of integral membrane proteins that carry an evolutionarily conserved domain called the prohibitin homology (PHB) domain. A number of studies now suggest that eucaryotic proteins carrying this domain have affinity for lipid raft domains. The PHB domain is carried by a diverse array of proteins including stomatin, podocin, the archetypal PHB protein, prohibitin, lower eucaryotic proteins such as the Dictyostelium discoideum proteins vacuolin A and vacuolin B and the Caenorhabditis elegans proteins unc-1, unc-24 and mec-2. The presence of this domain in some procaryotic proteins suggests that the PHB domain may constitute a primordial lipid recognition motif. Recent work has provided new insights into the trafficking and targeting of flotillin and other PHB domain proteins. While the function of this large family of proteins remains unclear, studies of the C. elegans PHB proteins suggest possible links to a class of volatile anaesthetics raising the possibility that these lipophilic agents could influence lipid raft domains. This review will discuss recent insights into the cell biology of flotillins and the large family of evolutionarily conserved PHB domain proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Trypanosomatidae comprise a large group of parasitic protozoa, some of which cause important diseases in humans. These include Tryanosoma brucei (the causative agent of African sleeping sickness and nagana in cattle), Trypanosoma cruzi (the causative agent of Chagas' disease in Central and South America), and Leishmania spp. (the causative agent of visceral and [muco]cutaneous leishmaniasis throughout the tropics and subtropics). The cell surfaces of these parasites are covered in complex protein- or carbohydrate-rich coats that are required for parasite survival and infectivity in their respective insect vectors and mammalian hosts. These molecules are assembled in the secretory pathway. Recent advances in the genetic manipulation of these parasites as well as progress with the parasite genome projects has greatly advanced our understanding of processes that underlie secretory transport in trypanosomatids. This article provides an overview of the organization of the trypanosomatid secretory pathway and connections that exist with endocytic organelles and multiple lytic and storage vacuoles. A number of the molecular components that are required for vesicular transport have been identified, as have some of the sorting signals that direct proteins to the cell surface or organelles it? the endosome-vacuole system. Finally, the subcellular organization of the major glycosylation pathways in these parasites is reviewed. Studies on these highly divergent eukaryotes provide important insights into the molecular processes underlying secretory transport that arose very early in eukaryotic evolution. They also reveal unusual or novel aspects of secretory), transport and protein glycosylation that may be exploited in developing new antiparasite drugs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Almost 50 years after the first sighting of small pits that covered the surface of mammalian cells, investigators are now getting to grips with the detailed workings of these enigmatic structures that we now know as caveolae.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Localization of signaling complexes to specific micro-domains coordinates signal transduction at the plasma membrane. Using immunogold electron microscopy of plasma membrane sheets coupled with spatial point pattern analysis, we have visualized morphologically featureless microdomains including lipid rafts, in situ and at high resolution. We find that an inner-plasma membrane lipid raft marker displays cholesterol-dependent clustering in microdomains with a mean diameter of 44 nm that occupy 35% of the cell surface. Cross-linking an outer-leaflet raft protein results in the redistribution of inner leaflet rafts, but they retain their modular structure. Analysis of Ras microlocalization shows that inactive H-ras is distributed between lipid rafts and a cholesterol-independent micro-domain. Conversely, activated H-ras and K-ras reside predominantly in nonoverlapping, cholesterol-independent microdomains. Galectin-1 stabilizes the association of activated H-ras with these nonraft microdomains, whereas K-ras clustering is supported by farnesylation, but not geranylgeranylation. These results illustrate that the inner plasma membrane comprises a complex mosaic of discrete microdomains. Differential spatial localization within this framework can likely account for the distinct signal outputs from the highly homologous Ras proteins.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Proteins of the annexin family are believed to be involved in membrane-related processes, but their precise functions remain unclear. Here, we have made use of several experimental approaches, including pathological conditions, RNA interference and in vitro transport assays, to study the function of annexin II in the endocytic pathway. We find that annexin II is required for the biogenesis of multivesicular transport intermediates destined for late endosomes, by regulating budding from early endosomes-but not the membrane invagination process. Hence, the protein appears to be a necessary component of the machinery controlling endosomal membrane dynamics and multivesicular endosome biogenesis. We also find that annexin II interacts with cholesterol and that its subcellular distribution is modulated by the subcellular distribution of cholesterol, including in cells from patients with the cholesterol-storage disorder Niemann-Pick C. We conclude that annexin II forms cholesterol-containing platforms on early endosomal membranes, and that these platforms regulate the onset of the degradation pathway in animal cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The endocytosis of E-cadherin has recently emerged as an important determinant of cadherin function with the potential to participate in remodeling adhesive contacts. In this study we focused on the initial fate of E-cadherin when it predominantly exists free on the cell surface prior to adhesive binding or incorporation into junctions. Surface-labeling techniques were used to define the endocytic itinerary of E-cadherin in MCF-7 cells and in Chinese hamster ovary cells stably expressing human E-cadherin. We found that in this experimental system E-cadherin entered a transferrin-negative compartment before transport to the early endosomal compartment, where it merged with classical clathrin-mediated uptake pathways. E-cadherin endocytosis was inhibited by mutant dynamin, but not by an Eps15 mutant that effectively blocked transferrin internalization. Furthermore, sustained signaling by the ARF6 GTPase appeared to trap endocytosed E-cadherin in large peripheral structures. We conclude that in isolated cells unbound E-cadherin on the cell surface is predominantly endocytosed by a clathrin-independent pathway resembling macropinocytotic internalization, which then fuses with the early endosomal system. Taken with earlier reports, this suggests the possibility that multiple pathways exist for E-cadherin entry into cells that are likely to reflect cell context and regulation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plasma membrane compartmentalization imposes lateral segregation on membrane proteins that is important for regulating signal transduction. We use computational modeling of immunogold spatial point patterns on intact plasma membrane sheets to test different models of inner plasma membrane organization. We find compartmentalization at the nanoscale level but show that a classical raft model of preexisting stable domains into which lipid raft proteins partition is incompatible with the spatial point patterns generated by the immunogold labeling of a palmitoylated raft marker protein. Rather, approximate to 30% of the raft protein exists in cholesterol-dependent nanoclusters, with approximate to 70% distributed as monomers. The cluster/monomer ratio (number of proteins in clusters/number of proteins outside clusters) is independent of expression level. H-rasG12V and K-rasG12V proteins also operate in nanoclusters with fixed cluster/monomer ratios that are independent of expression level. Detailed calibration of the immunogold imaging protocol suggests that radii of raft and RasG12V protein nanoclusters may be as small as 11 and 6 nm, respectively, and shows that the nanoclusters contain small numbers (6.0-7.7) of proteins. Raft nanoclusters do not form if the actin cytoskeleton is disassembled. The formation of K-rasG12V but not H-rasG12V nanoclusters also is actin-dependent. K-rasG12V but not H-rasG12V signaling is abrogated by actin cytoskeleton disassembly, which shows that nanoclustering is critical for Ras function. These findings argue against stable preexisting domains on the inner plasma membrane in favor of dynamic actively regulated nanoclusters similar to those proposed for the outer plasma membrane. RasG12V nanoclusters may facilitate the assembly of essential signal transduction complexes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Most mammalian cells have in their plasma membrane at least two types of lipid microdomains, non-invaginated lipid rafts and caveolae. Glycosylphosphatidylinositol (GPI)-anchored proteins constitute a class of proteins that are enriched in rafts but not caveolae at steady state. We have analyzed the effects of abolishing GPI biosynthesis on rafts, caveolae, and cholesterol levels. GPI-deficient cells were obtained by screening for resistance to the pore-forming toxin aerolysin, which uses this class of proteins as receptors. Despite the absence of GPI-anchored proteins, mutant cells still contained lipid rafts, indicating that GPI-anchored proteins are not crucial structural elements of these domains. Interestingly, the caveolae-specific membrane proteins, caveolin-1 and 2, were up-regulated in GPI-deficient cells, in contrast to flotillin-I and GM1, which were expressed at normal levels. Additionally, the number of surface caveolae was increased. This effect was specific since recovery of GPI biosynthesis by gene recomplementation restored caveolin expression and the number of surface caveolae to wild type levels. The inverse correlation between the expression of GPI-anchored proteins and caveolin-1 was confirmed by the observation that overexpression of caveolin-1 in wild type cells led to a decrease in the expression of GPI-anchored proteins. In cells lacking caveolae, the absence of GPI-anchored proteins caused an increase in cholesterol levels, suggesting a possible role of GPI-anchored proteins in cholesterol homeostasis, which in some cells, such as Chinese hamster ovary cells, can be compensated by caveolin up-regulation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The spatial organization of plasma membrane components in discrete microdomains is thought to be a key factor in the generation of distinct signal outputs. A detailed characterization of plasma membrane microdomains, including descriptions of their size, dynamics and abundance, has proved to be a taxing problem for cell biologists and biophysicists. The use of novel techniques is providing exciting new insights into the challenging problem of plasma membrane microstructure and has allowed the visualization of domains with the characteristics expected of lipid rafts - microdomains of the plasma membrane enriched in cholesterol and sphingolipids. This review focuses on some of these recent advances and uses Ras signaling as a paradigm for understanding inner plasma membrane organization and the role of lipid rafts in cellular function.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microlocalization of Ras proteins to different microdomains of the plasma membrane is critical for signaling specificity. Here we examine the complex membrane interactions of H-ras with a combination of FRAP on live cells to measure membrane affinity and electron microscopy of intact plasma membrane sheets to spatially map microdomains. We show that three separable forces operate on H-ras at the plasma membrane. The lipid anchor, comprising a processed CAAX motif and two palmitic acid residues, generates one attractive force that provides a high-affinity interaction with lipid rafts. The adjacent hypervariable linker domain provides a second attractive force but for nonraft plasma membrane microdomains. Operating against the attractive interaction of the lipid anchor for lipid rafts is a repulsive force generated by the N-terminal catalytic domain that increases when H-ras is GTP loaded. These observations lead directly to a novel mechanism that explains how H-ras lateral segregation is regulated by activation state: GTP loading decreases H-ras affinity for lipid rafts and allows the hypervariable linker domain to target to nonraft microdomains, the primary site of H-ras signaling.