10 resultados para Golden (tavaramerkki)
em University of Queensland eSpace - Australia
Resumo:
The zebrafish golden mutation is characterized by the production of small and irregular-shaped melanin granules, resulting in a lightening of the pigmented lateral stripes of the animal. The recent positional cloning and localization of the golden gene, combined with genotype-phenotype correlations of alleles of its human orthologue (SLC24A5) in African-American and African-Caribbean populations, provide insights into the genetic and molecular basis of human skin colour. SLC24A5 promotes melanin deposition through maturation of the melanosome, highlighting the importance of ion-exchange in the function of this organelle.
Resumo:
A new species, Stephanostomum talakitok n. sp., is described from the golden trevally Gnathanodon speciosus, Ningaloo Reef, Western Australia. It has 36 (34-40) circum-oral spines and the vitellarium reaches to no less than 10-17% of the hindbody length from the ventral sucker. It differs from other species of Stephanostomum with these characteristics by combinations of the gradual diminution of the circum-oral spine size to a small mid-ventral spine, the contiguous gonads with no intervening vitelline follicles, the sucker-ratio and various other ratios, including the distance between the ventral sucker and the ovary and the distance the cirrus-sac reaches into the hindbody, both as a proportion of body length.
Resumo:
The paper reports the findings of an experimental survey conducted to determine the public's willingness to pay (WTP) for the protection and conservation of the golden-shouldered parrot in Australia. This parrot is endemic to Australia and is one of Australia's most endangered birds. The paper examines the public's knowledge of this parrot and compares it with other endangered birds as well as common birds and the public's WTP for conservation from a hypothetical allocation of money based on their current knowledge. We then examine how this allocation changes with increased knowledge about all species.
Resumo:
This paper deals with atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in photonic band gap materials. The case of high Q cavities has been treated elsewhere using Fano diagonalization based on a quasimode approach, showing that the cavity quasimodes are responsible for pseudomodes introduced to treat non-Markovian behaviour. The paper considers a simple model of a photonic band gap case, where the spatially dependent permittivity consists of a constant term plus a small spatially periodic term that leads to a narrow band gap in the spectrum of mode frequencies. Most treatments of photonic band gap materials are based on the true modes, obtained numerically by solving the Helmholtz equation for the actual spatially periodic permittivity. Here the field modes are first treated in terms of a simpler quasimode approach, in which the quasimodes are plane waves associated with the constant permittivity term. Couplings between the quasimodes occur owing to the small periodic term in the permittivity, with selection rules for the coupled modes being related to the reciprocal lattice vectors. This produces a field Hamiltonian in quasimode form. A matrix diagonalization method may be applied to relate true mode annihilation operators to those for quasimodes. The atomic transitions are coupled to all the quasimodes, and the true mode atom-EM field coupling constants (one-photon Rabi frequencies) are related to those for the quasimodes and also expressions are obtained for the true mode density. The results for the one-photon Rabi frequencies differ from those assumed in other work. Expressions for atomic decay rates are obtained using the Fermi Golden rule, although these are valid only well away from the band gaps.