33 resultados para Glutamate synthase expression

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the gene expression profiles of different members of the 1-aminocyclopropane-1-carboxilic acid (ACC) synthase (EC 4.4.1.14) gene family in broccoli (Brassica oleracea L. var. italica) during the post-harvest-induced senescence process. Using RT-PCR, three different cDNAs coding for ACC synthase (BROCACS1, BROCACS2 and BROCACS3) were amplified from floret tissue at the start of the senescence process. The three genes share relatively little homology, but have highly homologous sequences in Arabidopsis thaliana, and could be functionally related to these counterparts. Southern analyses suggest that BROCACS1 and BROCACS3 are present as single copy genes, while there are probably two copies of BROCACS2. All three genes showed different expression patterns: BROCACS1 is likely to be either wound - or mechanical stress-induced showing high transcript levels after harvesting, but no detectable expression afterwards. BROCACS2 shows steady expression throughout senescence, increasing at the latest stages, and BROCACS3 is almost undetectable until the final stages. Our results suggest that BROCACS1 could be required to initiate the senescence process, while BROCACS2 would be the main ACC synthase gene involved throughout the post-harvest-induced senescence. BROCACS3's expression pattern indicates that it is not directly involved in the initial stages of senescence, but in the final remobilization of cellular resources.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is the most common form of dementia, accounting for 60-70% of cases in subjects over 65 years of age. Several postulates have been put forward that relate AD neuropathology to intellectual and functional impairment. These range from free-radical-induced damage, through cholinergic dysfunction, to beta-amyloid-induced toxicity. However, therapeutic strategies aimed at improving the cognitive symptoms of patients via choline supplementation, cholinergic stimulation or beta-amyloid vaccination, have largely failed. A growing body of evidence suggests that perturbations in systems using the excitatory amino acid L-glutamate (L-Glu) may underlie the pathogenic mechanisms of (e.g.) hypoxia-ischemia, epilepsy, and chronic neurodegenerative disorders such as Huntington's disease and AD. Almost all neurons in the CNS carry the N-methyl-D-aspartate (NMDA) subtype of ionotropic L-glutamate receptors, which can mediate post-synaptic Ca2+ influx. Excitotoxicity resulting from excessive activation of NMDA receptors may enhance the localized vulnerability of neurons in a manner consistent with AD neuropathology, as a consequence of an altered regional distribution of NMDA receptor subtypes. This review discusses mechanisms for the involvement of the NMDA receptor complex and its interaction with polyamines in the pathogenesis of AD. NMDA receptor antagonists have potential for the therapeutic amelioration of AD. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Serotonin (5-hydroxytryptamine, 5-HT) is an amine neurotransmitter derived from tryptophan and is important in brain systems regulating mood, emotional behavior, and sleep. Selective serotonin reuptake inhibitor (SSRI) drugs are used to treat disorders such as depression, stress, eating disorders, autism, and schizophrenia. It is thought that these drugs act to prolong the action of 5-HT by blocking reuptake. This may lead to decreased 5-HT content in the nerve fibers themselves; however, this has not previously been directly demonstrated. We have studied the effects of administration of two drugs, imipramine and citalopram, on levels of 5-HT in nerve fibers in the murine brain. Quantitative analysis of the areal density of 5-HT fibers throughout the brain was performed using ImageJ software. While a high density of fibers was observed in mid- and hind-brain regions and areas such as thalamus and hypothalamus, densities were far lower in areas such as cortex, where SSRIs might be thought to exert their actions. As anticipated, imipramine and citalopram produced a decline in 5-HT levels in nerve fibers, but the result was not uniform. Areas such as inferior colliculus showed significant reduction whereas little, if any, change was observed in the adjacent superior colliculus. The reason for, and significance of, this regionality is unclear. It has been proposed that serotonin effects in the brain might be linked to changes in glutamatergic transmission. Extracellular glutamate levels are regulated primarily by glial glutamate transporters. Qualitative evaluation of glutamate transporter immunolabeling in cortex of control and drug-treated mice revealed no discernable difference in intensity of glutamate transporter immunoreactivity. These data suggest that changes in intracellular and extracellular levels of serotonin do not cause concomitant changes in astroglial glutamate transporter expression, and thus cannot represent a mechanism for the delayed efficacy of antidepressants when administered clinically. © 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The homeostasis of glutamate is critical to normal brain function; deficiencies in the regulation of extracellular glutamate are thought to be a major determinant of damage in hypoxic brains. Extracellular levels of glutamate are regulated mainly by plasmalemmal glutamate transporters. We have evaluated the distribution of the glutamate transporter GLAST and two splice variants of GLT-1 in the hypoxic neonatal pig brain using this as model of neonatal humans. In response to severe hypoxic insults, we observe a rapid loss of two glial glutamate transporters from specific brain regions, such as the CA1 region of the hippocampus, but not the dentate gyrus. The spatial distribution of loss accords with patterns of damage in these brains. Conversely, we demonstrate that hypoxia evokes the expression of a splice variant of GLT-1 in neurons. We suggest that this expression may be induced in response to elevated extracellular glutamate around these neurons, and that this splice variant may represent a useful marker for direct quantification of the extent of likely neuronal damage in hypoxic brains. © 2004 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have compared the expression pattern of NMDA receptor subunits (NR1 and NR2A-D)and NRI splice variants (NR1-1a/1b,-2a/2b,-3a/3b,4a/4b) in motor neuron populations from adult Wistar rats that are vulnerable (hypoglossal, XII) or resistant (oculomotor, III) to death in amyotrophic lateral sclerosis (ALS). The major finding was higher levels of expression of the NR2B subunit in the hypoglossal nucleus. Quantitative real-time PCR showed that NR1 was expressed at a greater level than any of the NR2 subunits (> 15 fold greater, P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic alcoholism leads to localized brain damage, which is prominent in superior frontal cortex but mild in motor cortex. The likelihood of developing alcohol dependence is associated with genetic markers. GABA(A) receptor expression differs between alcoholics and controls, whereas glutamate receptor differences are muted. We determined whether genotype differentiated the localized expression of glutamate and gamma-aminobutyric acid (GABA) receptors to influence the severity of alcohol-induced brain damage. Cerebrocortical tissue was obtained at autopsy from alcoholics without alcohol-related disease, alcoholics with cirrhosis, and matched controls. DRD2A, DRD2B, GABB2, EAAT2, and 5HTT genotypes did not divide alcoholic cases and controls on N-methyl-D-aspartate (NMDA) receptor parameters. In contrast, alcohol dehydrogenase (ADH)3 genotype interacted significantly with NMDA receptor efficacy and affinity in a region-specific manner. EAAT2 genotype interacted significantly with local GABAA receptor subunit mRNA expression, and GABB2 and DRD2B genotypes with p subunit isoform protein expression. Genotype may modulate amino acid transmission locally so as to mediate neuronal vulnerability. This has implications for the effectiveness of pharmacological interventions aimed at ameliorating brain damage and, possibly, dependence. (C) 2004 Elsevier Ltd. All rights reserved

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have previously shown that the expression of NMDA receptor NR1 subunit mRNA splice variants in Alzheimer's disease (AD) brain varies according to regional susceptibility to pathological damage. Here we investigated the expression of the modulatory NR2 subunits of the NMDA receptor using quantitative RT-PCR to assay all NR2 isoforms. Significantly lower expression of NR2A and NR2B transcripts was found in susceptible regions of AD brain, whereas expression of NR2C and NR2D transcripts did not differ from that in controls. Western blot analysis confirmed a lower expression of the NR2A and NR2B isoforms at the protein level. The results suggest that NR2 subunit composition may modulate NMDA receptor-mediated excitotoxicity. NMDA receptor dysfunction might give rise to the regionally selective pattern of neuronal loss that is characteristic of AD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) catalyses the formation of 2-acetolactate and 2-aceto-2-hydroxybutyrate as the first step in the biosynthesis of the branched-chain amino acids valine, leucine and isoleucine. The enzyme is inhibited by a wide range of substituted sulfonylureas and imidazolinones and many of these compounds are used as commercial herbicides. Here, the crystallization and preliminary X-ray diffraction analysis of the catalytic subunit of Arabidopsis thaliana AHAS in complex with the sulfonylurea herbicide chlorimuron ethyl are reported. This is the first report of the structure of any plant protein in complex with a commercial herbicide. Crystals diffract to 3.0 Angstrom resolution, have unit-cell parameters a = b = 179.92, c = 185.82 Angstrom and belong to space group P6(4)22. Preliminary analysis indicates that there is one monomer in the asymmetric unit and that these are arranged as pairs of dimers in the crystal. The dimers form a very open hexagonal lattice, with a high solvent content of 81%.