11 resultados para Glomerular number
em University of Queensland eSpace - Australia
Resumo:
Background. In the Southeast United States, African Americans have an estimated incidence of hypertension and end-stage renal disease (ESRD) that is five times greater than Caucasians. Higher rates of low birth weight (LBW) among African Americans is suggested to predispose African Americans to the higher risk, possibly by reducing the number of glomeruli that develop in the kidney. This study investigates the relationships between age, race, gender, total glomerular number (N-glom), mean glomerular volume (V-glom), body surface area (BSA), and birth weight. Methods. Stereologic estimates of N-glom and V-glom were obtained using the physical disector/fractionator combination for autopsy kidneys from 37 African Americans and 19 Caucasians. Results. N-glom was normally distributed and ranged from 227,327 to 1,825,380, an 8.0-fold difference. A direct linear relationship was observed between N-glom and birth weight (r=0.423, P=0.0012) with a regression coefficient that predicted an increase of 257,426 glomeruli per kilogram increase in birth weight (alpha=0.050:0.908). Among adults there was a 4.9-fold range in V-glom , and in adults, V-glom was strongly and inversely correlated with N-glom (r=-0.640, P=0.000002). Adult V-glom showed no significant correlation with BSA for males (r=-0.0150, P=0.936), although it did for females (r=0.606, P=0.022). No racial differences in average N-glom or V-glom were observed. Conclusion. Birth weight is a strong determinant of N-glom and thereby of glomerular size in the postnatal kidney. The findings support the hypothesis that LBW by impairing nephron development is a risk factor for hypertension and ESRD in adulthood.
Resumo:
Low nephron number has been related to low birth weight and hypertension. In the southeastern United States, the estimated prevalence of chronic kidney disease due to hypertension is five times greater for African Americans than white subjects. This study investigates the relationships between total glomerular number (N-glom), blood pressure, and birth weight in southeastern African Americans and white subjects. Stereological estimates of N-glom were obtained using the physical disector/fractionator technique on autopsy kidneys from 62 African American and 60 white subjects 30-65 years of age. By medical history and recorded blood pressures, 41 African Americans, and 24 white subjects were identified as hypertensive and 21 African Americans and 36 white subjects as normotensive. Mean arterial blood pressure ( MAP) was obtained on 81 and birth weights on 63 subjects. For African Americans, relationships between MAP, N-glom, and birth weight were not significant. For white subjects, they were as follows: MAP and N-glom ( r = -0.4551, P = 0.0047); Nglom and birth weight ( r = 0.5730, P = 0.0022); MAP and birth weight ( r = -0.4228, P = 0.0377). For African Americans, average N-glom of 961 840 +/- 292 750 for normotensive and 867 358 +/- 341 958 for hypertensive patients were not significantly different ( P = 0.285). For white subjects, average N-glom of 923 377 +/- 256 391 for normotensive and 754 319 +/- 329 506 for hypertensive patients were significantly different ( P = 0.03). The data indicate that low nephron number and possibly low birth weight may play a role in the development of hypertension in white subjects but not African Americans.
Resumo:
Enlarged glomerular size is a feature of focal segmental glomerulosclerosis, obesity-related glomerulopathy, diabetic nephropathy, and hypertension. The distribution of glomerular volumes within different cortical zones and glomerular volume alterations with age and obesity may contribute to understanding the evolution of these diseases. We analyzed the distributions of volumes of individual glomeruli in the superficial, middle, and juxtamedullary cortex of normal human kidneys using the disector/Cavalieri method. Volumes (V-glom) of 720 nonsclerotic glomeruli (30 per kidney, 10 per zone) were estimated in autopsy kidneys of 24 American men, 12 aged 20 to 30 yr and 12 aged 51 to 69 yr. Black and white individuals were represented equally. The range of individual V-glom within subjects varied from two- to eight-fold. There were no significant zonal differences in V-glom in the young or those with body surface area (BSA) <= 2.11 m(2). In contrast, superficial glomeruli in the older age group, in those with BSA > 2.11 m(2), and in white subjects were significantly larger than juxtamedullary glomeruli. Black subjects tended toward larger V-glom than white subjects, and this difference was significant and most marked in the juxtamedullary zone and independent of age, BSA, and glomerular number. There is a wide range in individual V-glom in adults. BSA, race, and age independently influence V-glom different zones of the renal cortex. These findings might reflect processes of aging and susceptibility factors to renal disease.
Resumo:
Essential hypertension is one of the most common diseases in the Western world, affecting about 26.4% of the adult population, and it is increasing (1). Its causes are heterogeneous and include genetic and environmental factors (2), but several observations point to an important role of the kidney in its genesis (3). In addition to variations in tubular transport mechanisms that could, for example, affect salt handling, structural characteristics of the kidney might also contribute to hypertension. The burden of chronic kidney disease is also increasing worldwide, due to population growth, increasing longevity, and changing risk factors. Although single-cause models of disease are still widely promoted, multideterminant or multihit models that can accommodate multiple risk factors in an individual or in a population are probably more applicable (4,5). In such a framework, nephron endowment is one potential determinant of disease susceptibility. Some time ago, Brenner and colleagues (6,7) proposed that lower nephron numbers predispose both to essential hypertension and to renal disease. They also proposed that hypertension and progressive renal insufficiency might be initiated and accelerated by glomerular hypertrophy and intraglomerular hypertension that develops as nephron number is reduced (8). In this review, we summarize data from recent studies that shed more light on these hypotheses. The data supply a new twist to possible mechanisms of the Barker hypothesis, which proposes that intrauterine growth retardation predisposes to chronic disease in later life (9). The review describes how nephron number is estimated and its range and some determinants and morphologic correlates. It then considers possible causes of low nephron numbers. Finally, associations of hypertension and renal disease with reduced nephron numbers are considered, and some potential clinical implications are discussed.
Resumo:
Aborigines in remote areas of Australia have much higher rates of renal disease, as well as hypertension and cardiovascular disease, than non-Aboriginal Australians. We compared kidney findings in Aboriginal and non-Aboriginal people in one remote region. Glomerular number and mean glomerular volume were estimated with the disector/fractionator combination in the right kidney of 19 Aborigines and 24 non-Aboriginal people undergoing forensic autopsy for sudden or unexpected death in the Top End of the Northern Territory. Aborigines had 30% fewer glomeruli than non-Aborigines-202000 fewer glomeruli per kidney, or an estimated 404000 fewer per person (P=0.036). Their mean glomerular volume was 27% larger (P=0.016). Glomerular number was significantly correlated with adult height, inferring a relationship with birthweight, which, on average, is much lower in Aboriginal than non-Aboriginal people. Aboriginal people with a history of hypertension had 30% fewer glomeruli than those without-250000 fewer per kidney (P=0.03), or 500000 fewer per person, and their mean glomerular volume was about 25% larger. The lower nephron number in Aboriginal people is compatible with their susceptibility to renal failure. The additional nephron deficit associated with hypertension is compatible with other reports. Lower nephron numbers are probably due in part to reduced nephron endowment, which is related to a suboptimal intrauterine environment. Compensatory glomerular hypertrophy in people with fewer nephrons, while minimizing loss of total filtering surface area, might be exacerbating nephron loss. Optimization of fetal growth should ultimately reduce the florid epidemic of renal disease, hypertension, and cardiovascular disease.
Resumo:
Background. Australian Aborigines are experiencing epidemic proportions of renal disease, marked by albuminuria and, variably, hematuria. They also have high rates of low birth weight, which have been associated with lower kidney volumes and higher blood pressures. The authors evaluated relationships between kidney volume, blood pressure, albuminuria, and hematuria in 1 homogeneous group. Methods Forty-three percent (672 of 1,560) of the population in a remote coastal Australian Aboriginal community aged 4.4 to 72.1 years participated in the study. Results: Kidney size correlated closely with body size. Systolic blood pressure (SBP) was correlated inversely with kidney length and kidney volume, after adjusting for age, sex, and body surface area (BSA); a 1-cm increase in mean kidney length was associated with a 2.2-mm Hg decrease in SBP, and a 10-mL increase in mean kidney volume was associated with a 0.6-mm Hg decrease in SBP (P = 0.001). Mean kidney volume explained 10% of the variance in SBP in a multivariate model containing age, sex, and BSA. In addition to higher SBP, adults who had the lowest quartiles of kidney volume also had the highest levels of overt albuminuria (P = 0.044). Conclusion: Smaller kidneys predispose to higher blood pressures and albuminuria in this population. The lower volumes possibly represent kidneys with reduced nephron numbers, which might be related to an adverse intrauterine environment. Susceptibility to renal disease could be a direct consequence of reduced nephron numbers; the higher blood pressures with which they are associated could also contribute to, as well as derive from, this association.
Resumo:
Only recently has the nephrology community moved beyond a fairly singular focus on terminal kidney failure to embrace population-based studies of earlier stages of disease, its markers and risk factors, and of interventions. Observations in developing countries, and in minority, migrant, and disadvantaged groups in westernized countries, have promoted these developments. We are only beginning to interpret renal disease in the context of public health history, social and health transitions, changing population demography, and competing mortality. Its intimate relationships to other health issues are being progressively exposed. Perspectives on the multideterminant etiology of most disease and the pedestrian nature of most risk factors are maturing. We are challenged to reconcile epidemiologic patterns with morphology in diseased renal tissue, and to consider structural markers, such as nephron number and glomerular size, as determinants of disease susceptibility. New work force models are mandated for population-based studies and intervention programs. Intervention programs need to be integrated with other chronic disease initiatives and nested in a matrix of systematic primary care, and although flexible to changing needs, must be sustained over the long term. Cross-disciplinary collaboration is essential in designing those programs, and in promoting them to health-care funders. Substantial expansion and restructuring of the discipline is needed for the nephrology community to participate effectively in those processes.
Resumo:
The total number of nephrons in normal human kidneys varies over a 10-fold range. This variation in total nephron number leads us to question whether low nephron number increases the risk of renal disease in adulthood. This review considers the available evidence in humans linking low nephron number/reduced nephron endowment and the susceptibility to renal disease. Total nephron number in humans has been directly correlated with birth weight and inversely correlated with age, mean glomerular volume, and hypertension. Low nephron number may be the result of suboptimal nephrogenesis during kidney development and/or loss of nephrons once nephrogenesis has been completed. Low nephron number is frequently, but not always, associated with hypertrophy of remaining glomeruli. This compensatory hypertrophy has also been associated with a greater susceptibility for kidney disease. Three human studies have reported reduced nelphron number in subjects with a history of hypertension. This correlation has been observed in White Europeans, White Americans (but not African Americans) and Australian Aborigines. Studies in additional populations are required, as well as a greater understanding of the fetal environmental and genetic determinants of low nephron number.
Resumo:
The objective of this study was to investigate the number of glomerular profiles that are required for accurate estimates of mean profile area in a renal biopsy series. Slides from 384 renal biopsies from one center were reviewed. They contained a median of seven glomerular profiles or of four profiles without sclerosis. Profile areas were measured using stereologic point counting. The true individual mean for each biopsy was calculated and the true population mean for groups of biopsies derived. Individual and population random sample means then were calculated from a random sampling of profiles in each biopsy and were compared with true means for the same biopsies. The effect on the true population means of the entire group of biopsies was also assessed, as the minimum number of glomerular profiles that were required for inclusion was changed. In a single biopsy, random sampling of >= 10 profiles without exclusions and of eight profiles or more without sclerosis reliably estimated the true mean areas. In a group of 30 biopsies, random sampling of five or more glomeruli per biopsy reliably estimated the true population mean. In the aggregate series, inclusion of all 384 biopsies produced the most robust true population mean; the reliability of the estimates decreased as the numbers of eligible biopsies diminished with increasing requisite minimum numbers of profiles per biopsy. We conclude that, while >= 10 profiles might be needed for reliable area estimates in a single biopsy, far fewer profiles per biopsy can suffice when groups of biopsies are studied. In analyses of groups of biopsies, all available biopsies should be used without consideration of the number of glomerular profiles in each. Stipulation of a specific minimum number of glomeruli in each biopsy for inclusion reduces the power of analyses because fewer biopsies are available for evaluation.