84 resultados para Global regulators
em University of Queensland eSpace - Australia
Resumo:
The establishment of the dormant state in meristems involves considerable physiological and metabolic alterations necessary for surviving unfavourable growth conditions. However, a global molecular analysis of dormancy in meristems has been hampered by the difficulty in isolating meristem cells. We used cryosectioning to isolate purified cambial meristem cells from the woody plant Populus tremula during active growth and dormancy. These samples were used to generate meristem-specific cDNA libraries and for cDNA microarray experiments to define the global transcriptional changes underlying cambial dormancy. The results indicate a significant reduction in the complexity of the cambial transcriptome in the dormant state. Although cell division is terminated in the dormant cambium, the cell cycle machinery appears to be maintained in a skeletal state as suggested by the continued presence of transcripts for several cell cycle regulators. The downregulation of PttPIN1 and PttPIN2 transcripts explains the reduced basipetal polar auxin transport during dormancy. The induction of a member of the SINA family of ubiquitin ligases implicated in auxin signalling indicates a potential mechanism for modulation of auxin sensitivity during cambial dormancy. The metabolic alterations during dormancy are mirrored in the induction of genes involved in starch breakdown and the glyoxysomal cycle. Interestingly, the induction of RGA1 like gene suggests modification of gibberellin signalling in cambial dormancy. The induction of genes such as poplar orthologues of FIE and HAP2 indicates a potential role for these global regulators of transcription in orchestrating extensive changes in gene expression during dormancy.
Resumo:
Regulation of the expression of dimethylsulfoxide (DMSO) reductase was investigated in the purple phototrophic bacterium Rhodobacter capsulatus. Under phototrophic, anaerobic conditions with malate as carbon source, DMSO caused an approximately 150-fold induction of DMSO reductase activity. The response regulator DorR was required for DMSO-dependent induction and also appeared to slightly repress DMSO reductase expression in the absence of substrate. Likewise, when pyruvate replaced malate as carbon source there was an induction of DMSO reductase activity in cells grown at low light intensity (16 W m(-2)) and again this induction was dependent on DorR. The level of DMSO reductase activity in aerobically grown cells was elevated when pyruvate replaced malate as carbon source. One possible explanation for this is that acetyl phosphate, produced from pyruvate, may activate expression of DMSO reductase by direct phosphorylation of DorR, leading to low levels of induction of dor gene expression in the absence of DMSO. A mutant lacking the global response regulator of photosynthesis gene expression, RegA, exhibited high levels of DMSO reductase in the absence of DMSO, when grown phototrophically with malate as carbon source. This suggests that phosphorylated RegA acts as a repressor of dor operon expression under these conditions. It has been proposed elsewhere that RegA-dependent expression is negatively regulated by the cytochrome cbb(3) oxidase. A cco mutant lacking cytochrome cbb(3) exhibited significantly higher levels of Phi[dorA::lacZ] activity in the presence of DMSO compared to wild-type cells and this is consistent with the above model. Pyruvate restored DMSO reductase expression in the regA mutant to the same pattern as found in wild-type cells. These data suggest that R. capsulatus contains a regulator of DMSO respiration that is distinct from DorR and RegA, is activated in the presence of pyruvate, and acts as a negative regulator of DMSO reductase expression.
Resumo:
Wolbachia are maternally inherited intracellular α-Proteobacteria found in numerous arthropod and filarial nematode species [1, 2 and 3]. They influence the biology of their hosts in many ways. In some cases, they act as obligate mutualists and are required for the normal development and reproduction of the host [4 and 5]. They are best known, however, for the various reproductive parasitism traits that they can generate in infected hosts. These include cytoplasmic incompatibility (CI) between individuals of different infection status, the parthenogenetic production of females, the selective killing of male embryos, and the feminization of genetic males [1 and 2]. Wolbachia infections of Drosophila melanogaster are extremely common in both wild populations and long-term laboratory stocks [6, 7 and 8]. Utilizing the newly completed genome sequence of Wolbachia pipientis wMel [9], we have identified a number of polymorphic markers that can be used to discriminate among five different Wolbachia variants within what was previously thought to be the single clonal infection of D. melanogaster. Analysis of long-term lab stocks together with wild-caught flies indicates that one of these variants has replaced the others globally within the last century. This is the first report of a global replacement of a Wolbachia strain in an insect host species. The sweep is at odds with current theory that cannot explain how Wolbachia can invade this host species given the observed cytoplasmic incompatibility characteristics of Wolbachia infections in D. melanogaster in the field [6].
Resumo:
A marker database was compiled for isolates of the potato and tomato late blight pathogen, Phytophthora infestans, originating from 41 locations which include 31 countries plus 10 regions within Mexico. Presently, the database contains information on 1,776 isolates for one or more of the following markers: restriction fragment length polymorphism (RFLP) fingerprint consisting of 23 bands; mating type; dilocus allozyme genotype; mitochondrial DNA haplotype; sensitivity to the fungicide metalaxyl; and virulence. In the database, 305 entries have unique RFLP fingerprints and 258 entries have unique multilocus genotypes based on RFLP fingerprint, dilocus allozyme genotype, and mating type. A nomenclature is described for naming multilocus genotypes based on the International Organization for Standardization (ISO) two-letter country code and a unique number, Forty-two previously published multilocus genotypes are represented in the database with references to publications. As a result of compilation of the database, seven new genotypes were identified and named. Cluster analysis of genotypes from clonally propagated populations worldwide generally confirmed a previously published classification of old and new genotypes. Genotypes from geographically distant countries were frequently clustered, and several old and new genotypes were found in two or more distant countries. The cluster analysis also demonstrated that A2 genotypes from Argentina differed from all others. The database is available via the Internet, and thus can serve as a resource for Phytophthora workers worldwide.