8 resultados para Global Positioning System (gps)
em University of Queensland eSpace - Australia
Resumo:
A self-matched printed hemispherical helical antenna for potential use in global positioning system receivers is introduced. Unlike wired hemispherical helical antennas, its printed form renders it a much more stable and endurable structure and also easier for fabrication. The optimized antenna shows an impedance bandwidth of 6%, a 3-dB axial ratio bandwidth of 6%-7%, a return loss greater than 20 dB, and a gain of about 9 dB at the center frequency. The patterns of the antenna show a larger mainlobe in the upper half space with relatively small backlobes. Both theoretical and experimental results will be presented.
Resumo:
Purpose: This study was conducted to devise a new individual calibration method to enhance MTI accelerometer estimation of free-living level walking speed. Method: Five female and five male middle-aged adults walked 400 m at 3.5, 4.5, and 5.5 km(.)h(-1), and 800 in at 6.5 km(.)h(-1) on an outdoor track, following a continuous protocol. Lap speed was controlled by a global positioning system (GPS) monitor. MTI counts-to-speed calibration equations were derived for each trial, for each subject for four such trials with each of four MTI, for each subject for the average MTI. and for the pooled data. Standard errors of the estimate (SEE) with and without individual calibration were compared. To assess accuracy of prediction of free-living walking speed, subjects also completed a self-paced, brisk 3-km walk wearing one of the four MTI, and differences between actual and predicted walking speed with and without individual calibration were examined. Results: Correlations between MTI counts and walking speed were 0.90 without individual calibration, 0.98 with individual calibration for the average MTI. and 0.99 with individual calibration for a specific MTI. The SEE (mean +/- SD) was 0.58 +/- 0.30 km(.)h(-1) without individual calibration, 0.19 +/- 0.09 km h(-1) with individual calibration for the average MTI monitor, and 0.16 +/- 0.08 km(.)h(-1) with individual calibration for a specific MTI monitor. The difference between actual and predicted walking speed on the brisk 3-km walk was 0.06 +/- 0.25 km(.)h(-1) using individual calibration and 0.28 +/- 0.63 km(.)h(-1) without individual calibration (for specific accelerometers). Conclusion: MTI accuracy in predicting walking speed without individual calibration might be sufficient for population-based studies but not for intervention trials. This individual calibration method will substantially increase precision of walking speed predicted from MTI counts.
Resumo:
This paper describes the real time global vision system for the robot soccer team the RoboRoos. It has a highly optimised pipeline that includes thresholding, segmenting, colour normalising, object recognition and perspective and lens correction. It has a fast ‘paint’ colour calibration system that can calibrate in any face of the YUV or HSI cube. It also autonomously selects both an appropriate camera gain and colour gains robot regions across the field to achieve colour uniformity. Camera geometry calibration is performed automatically from selection of keypoints on the field. The system acheives a position accuracy of better than 15mm over a 4m × 5.5m field, and orientation accuracy to within 1°. It processes 614 × 480 pixels at 60Hz on a 2.0GHz Pentium 4 microprocessor.
Resumo:
Many tools exist for determining and mapping the bathymetry and topography of aquatic systems, such as freshwater wetlands. However, these tools often require time-consuming survey work to produce accurate maps. In particular, the large quantity of data necessary may be prohibitive for projects where determining bathymetry is not a central focus, but instead a necessary step in achieving some other goal. We present a method to produce bathymetric surface maps with a minimum amount of effort using global positioning system receiver and laser transit survey data. We also demonstrate that this method is surprisingly accurate, given the small amount of data we use to generate the bathymetry maps.
Resumo:
Finding single pair shortest paths on surface is a fundamental problem in various domains, like Geographic Information Systems (GIS) 3D applications, robotic path planning system, and surface nearest neighbor query in spatial database, etc. Currently, to solve the problem, existing algorithms must traverse the entire polyhedral surface. With the rapid advance in areas like Global Positioning System (CPS), Computer Aided Design (CAD) systems and laser range scanner, surface models axe becoming more and more complex. It is not uncommon that a surface model contains millions of polygons. The single pair shortest path problem is getting harder and harder to solve. Based on the observation that the single pair shortest path is in the locality, we propose in this paper efficient methods by excluding part of the surface model without considering them in the search process. Three novel expansion-based algorithms are proposed, namely, Naive algorithm, Rectangle-based Algorithm and Ellipse-based Algorithm. Each algorithm uses a two-step approach to find the shortest path. (1) compute an initial local path. (2) use the value of this initial path to select a search region, in which the global shortest path exists. The search process terminates once the global optimum criteria are satisfied. By reducing the searching region, the performance is improved dramatically in most cases.
Resumo:
A major requirement for pervasive systems is to integrate context-awareness to support heterogeneous networks and device technologies and at the same time support application adaptations to suit user activities. However, current infrastructures for pervasive systems are based on centralized architectures which are focused on context support for service adaptations in response to changes in the computing environment or user mobility. In this paper, we propose a hierarchical architecture based on active nodes, which maximizes the computational capabilities of various nodes within the pervasive computing environment, while efficiently gathering and evaluating context information from the user's working environment. The migratable active node architecture employs various decision making processes for evaluating a rich set of context information in order to dynamically allocate active nodes in the working environment, perform application adaptations and predict user mobility. The active node also utilizes the Redundant Positioning System to accurately manage user's mobility. This paper demonstrates the active node capabilities through context-aware vertical handover applications.
Resumo:
Introduced mammals are major drivers of extinction. Feral goats (Capra hircus) are particularly devastating to island ecosystems, causing direct and indirect impacts through overgrazing, which often results in ecosystem degradation and biodiversity loss. Removing goat populations from islands is a powerful conservation tool to prevent extinctions and restore ecosystems. Goats have been eradicated successfully from 120 islands worldwide. With newly developed technology and techniques, island size is perhaps no longer a limiting factor in the successful removal of introduced goat populations. Furthermore,. the use of global positioning systems, geographic information systems, aerial hunting by helicopter specialized bunting dogs, and Judas goats has dramatically increased efficiency and significantly reduced the duration of eradication campaigns. Intensive monitoring programs are also critical for successful eradications. Because of the presence of humans with domestic goat populations on large islands, future island conservation actions will require eradication programs that involve local island inhabitants in a collaborative approach with biologists, sociologists, and educators. Given the clear biodiversity benefits, introduced goat populations should be routinely removed from islands.