4 resultados para German wit and humor
em University of Queensland eSpace - Australia
Resumo:
The study reported in this article is a part of a large-scale study investigating syntactic complexity in second language (L2) oral data in commonly taught foreign languages (English, German, Japanese, and Spanish; Ortega, Iwashita, Rabie, & Norris, in preparation). In this article, preliminary findings of the analysis of the Japanese data are reported. Syntactic complexity, which is referred to as syntactic maturity or the use of a range of forms with degrees of sophistication (Ortega, 2003), has long been of interest to researchers in L2 writing. In L2 speaking, researchers have examined syntactic complexity in learner speech in the context of pedagogic intervention (e.g., task type, planning time) and the validation of rating scales. In these studies complexity is examined using measures commonly employed in L2 writing studies. It is assumed that these measures are valid and reliable, but few studies explain what syntactic complexity measures actually examine. The language studied is predominantly English, and little is known about whether the findings of such studies can be applied to languages that are typologically different from English. This study examines how syntactic complexity measures relate to oral proficiency in Japanese as a foreign language. An in-depth analysis of speech samples from 33 learners of Japanese is presented. The results of the analysis are compared across proficiency levels and cross-referenced with 3 other proficiency measures used in the study. As in past studies, the length of T-units and the number of clauses per T-unit is found to be the best way to predict learner proficiency; the measure also had a significant linear relation with independent oral proficiency measures. These results are discussed in light of the notion of syntactic complexity and the interfaces between second language acquisition and language testing. Adapted from the source document
Resumo:
We have made AMS measurements on a series of 10-ring samples from a subfossil Huon pine log found in western Tasmania (42degreesS, 145degreesE). The results show a pronounced rise in Delta(14)C over the first 200 years, and a decrease over the following 160 years. Tree-ring width measurements indicate that this log (catalogue SRT-447) can be cross-dated with another subfossil log (SRT-416) for which a series of high-precision radiometric C-14 measurements have previously been made. When the two tree-ring series are thus aligned, SRT-447 is the older of the two logs, and there is a 139-year overlap. We then have a Huon pine floating chronology spanning 680 years, with C-14 measurements attached. The C-14 data sets agree well within the period of overlap indicated by the tree-rings. The C-14 variations from Huon pine show excellent agreement with those from German oak and pine for the period 10,350-9670 cal BP. Aligning the Huon pine C-14 Series with that from German oak and pine allows us to examine the inter-hemispheric offset in C-14 dates in the early Holocene. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Sudden cardiac death in small animals is uncommon but often occurs due to cardiac conduction defects or myocardial diseases. Primary cardiac conduction defects are mainly caused by mutations in genes involved in impulse conduction processes (e.g., gapjunction genes and transcription factors) or repolarisation processes (e.g., ion-channel genes), whereas primary cardiomyopathies are mainly caused by defective force generation or force transmission due to gene mutations in either sarcomeric or cytoskeleton proteins. Although over 50 genes have been identified in humans directly or indirectly related to sudden cardiac death, no genetic aetiologies have been identified in small animals. Sudden cardiac deaths have been also reported in German Shepherds and Boxers. A better understanding of molecular genetic aetiologies for sudden cardiac death will be required for future study toward unveiling actiology in sudden cardiac death in small animals. (c) 2005 Elsevier Ltd. All rights reserved.