2 resultados para Gerbera jamesonii
em University of Queensland eSpace - Australia
Resumo:
Botrytis cinerea is the major pathogen infecting cut freesia flowers. Flecking symptoms on petals caused by this fungus result in postharvest rejections and substantial economic loss to both growers and sellers. In a limited survey for industry, numbers of freesia stems sent from a specialist grower in The Netherlands and rejected at a cut flower wholesaler in the United Kingdom were documented. Relationships between preharvest environment conditions in Holland that may predispose flowers to infection and postharvest freesia rejection levels in the United Kingdom due to B. cinerea flecking symptom expression are reported. Freesia rejections peaked during spring and, to a lesser degree, autumn periods. However, no clear correlations between preharvest growing environment conditions (e.g. 3-day means for temperature preceding harvest) and postharvest rejection frequency (%) could be discerned. Thus, sporadic freesia rejections in the United Kingdom were probably attributable either to other unresolved variables during the pre- (e.g. infection pressure) and/or postharvest (e.g. condensation events) phases or to interactions among predisposing variables.
Resumo:
'Specking' on harvested freesia (Freesia hybrida) flowers is a problem worldwide. The disease is caused by the fungal pathogen Botrytis cinerea. This disease symptom detracts from appearance and reduces marketability of the flowers. Unlike other important cut flower crops (e.g. gerbera), the mode of infection and epidemiology of postharvest freesia flower specking caused by B. cinerea has not been reported. Epidemiological studies were carried out under simulated conditions typical of those occurring during postharvest handling of freesia flowers. Infection of freesia flowers by B. cinerea occurred when a conidium germinated, formed a germ tube(s) and penetrated epidermal cells. Fungal hyphae then colonised adjacent cells, resulting in visible lesions. Different host reactions were observed on freesia 'Cote d'Azur' petals at 20 degrees C compared to 5 degrees C. The infection process was relatively rapid at 20 degrees C, with visible lesions produced within 7 h of incubation. However, lesion expansion ceased after 24 h of incubation. Infection was slower at 5 degrees C, with visible lesions produced after 48 h of incubation. However, lesion development at 5 degrees C was continuous, with lesions expanding over 4 days. Light microscopy observations revealed increased host defence reactions during infection. These reactions involved production of phenolic compounds, probably lignin and/or callose, around infection sites. Such substances may play a role in restricting petal colonisation and lesion expansion. Disease severity and lesion numbers on freesia flowers incubated at 12 degrees C were higher, but not significantly higher (P > 0.05), than on those incubated at 20 degrees C. Disease severity and progression were differentially mediated by temperature and relative humidity (R. H.). Infection of freesia flowers was severe at 100% R. H. for all three incubation temperatures of 5, 12 and 20 degrees C. In contrast, no lesions were produced at 80 to 90% R. H. at either 5 or 20 degrees C.