10 resultados para Georgia-Pacific Big Lagoon Tree Farm, Humboldt County, California

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduced species are an increasingly pervasive problem. While studies on the ecology and behavior of these pests are numerous, there is relatively little known of their physiology, specifically their reproductive and stress physiology. One of the best documented introduced pest species is the brown tree snake, Boiga irregularis, which was introduced onto the Pacific island of Guam sometime around World War II. The snake is responsible for severely reducing Guam's native vertebrates. We captured free-living individuals throughout the year and measured plasma levels of stress and sex hormones in an effort to determine when they were breeding. These data were compared to reproductive cycles from a captive population originally collected from Guam. Free-living individuals had chronically elevated plasma levels of the stress hormone corticosterone and basal levels of sex steroids and a remarkably low proportion were reproductively active. These data coincide with evidence that the wild population may be in decline. Captive snakes, had low plasma levels of corticosterone with males displaying a peak in plasma testosterone levels during breeding. Furthermore, we compared body condition between the free-living and captive snakes from Guam and free-living individuals captured from their native range in Australia. Male and female free-living snakes from Guam exhibited significantly reduced body condition compared to free-living individuals from Australia. We suggest that during the study period, free-living brown tree snakes on Guam were living under stressful conditions, possibly due to overcrowding and overexploitation. of food resources, resulting in decreased body condition and suppressed reproduction. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neotropical pioneer species Vochysia ferruginea is locally important for timber and is being increasingly exploited. The sustainable utilisation of this species would benefit from an understanding of the level and partitioning of genetic diversity within remnant and secondary regrowth populations. We used data from total genome (amplified fragment length polymorphism, AFLP) and chloroplast genome markers to assay diversity levels within seven Costa Rican populations. Significant chloroplast differentiation between Atlantic and Pacific watersheds was observed, suggesting divergent historical origins for these populations. Contemporary gene flow, though extensive, is geographically constrained and a clear pattern of isolation by distance was detectable when an inter-population distance representing gene flow around the central Costa Rican mountain range was used. Overall population differentiation was low (F-ST = 0.15) and within-population diversity high, though variable (H-s=0.16-0.32), which fits with the overall pattern of population genetic structure expected for a widespread, outcrossed tropical tree. However genetic diversity was significantly lower and differentiation higher for recently colonised and disturbed populations compared to that at more established sites. Such a pattern seems indicative of a pioneer species undergoing repeated cycles of colonisation and succession.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water level and current measurements from two virtually enclosed South Pacific atolls, Manihiki and Rakahanga, support a new lagoon flushing mechanism which is driven by waves and modulated by the ocean tide for virtually enclosed atolls. This is evident because the lagoon water level remains above the ocean at all tidal phases (i.e., ruling out tidal flushing) and because the average lagoon water level rises significantly during periods with large waves. Hence, we develop a model by which the lagoons are flushed by waves pumping of ocean water into the lagoon and gravity draining water from the lagoon over the reef rim. That is, the waves on the exposed side push water into the lagoon during most of the tidal cycle while water leaves the lagoon on the protected side for most of the tidal cycle. This wave-driven through flow flushing is shown to be more efficient than alternating tidal flushing with respect to water renewal. Improved water quality should therefore be sought through enhancement of the natural wave pumping rather than by blasting deep channels which would change the system to an alternating tide-driven one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate dating of lagoon sediments has been a difficult problem, although lagoon profiles, usually with high deposition rates, have a great potential for high-resolution climate reconstruction. We report 26 high-precision TIMS U-series dates (on 25 coral branches) and five AMS C-14 dates (on foraminifera) for a 15.4-m long lagoon core from Yongshu Reef, Nansha area, southern South China Sea. All the dates are in the correct stratigraphical sequence, providing the best chronology so far reported for lagoon deposits. The results reveal a similar to 4000-a continuous depositional history, with sedimentation rates varying from 0.8 to 24.6 mm a(-1), with an average of 3.85 mm a(-1), which corresponds to an average net carbonate accumulation rate of similar to 2700 g CaCO3 m(-2) a(-1), significantly higher than the mean value (800 +/- 400 g CaCO3 m(-2) a(-1)) used for lagoons in general in previous studies of global carbonate budget. Episodes of accelerated depositions within the last 1000 years correlate well with strong storm events identified by U-series dates of storm-transported coral blocks in the area. However, in the longer term, the sedimentation rates during the past 1000 years were much higher than earlier on, probably due to more vigorous wave-reef interaction as a result of relative sea-level fall since 500 AD and expansion of reef flat area, supplying more sediments. The coral TIMS U-series ages and foraminifera AMS 14C dates reveal intriguing apparent radiocarbon reservoir ages (R) from 572 to 1052 years, which are much higher than global mean values of similar to 400 years. (c) 2006 Elsevier Ltd. All rights reserved.