2 resultados para Geometry, Non-euclidean
em University of Queensland eSpace - Australia
Resumo:
Two aspects of hydrogen-air non-equilibrium chemistry related to scramjets are nozzle freezing and a process called 'kinetic afterburning' which involves continuation of combustion after expansion in the nozzle. These effects were investigated numerically and experimentally with a model scramjet combustion chamber and thrust nozzle combination. The overall model length was 0.5m, while precombustion Mach numbers of 3.1 +/- 0.3 and precombustion temperatures ranging from 740K to 1,400K were involved. Nozzle freezing was investigated at precombustion pressures of 190kPa and higher, and it was found that the nozzle thrusts were within 6% of values obtained from finite rate numerical calculations, which were within 7% of equilibrium calculations. When precombustion pressures of 70kPa or less were used, kinetic afterburning was found to be partly responsible for thrust production, in both the numerical calculations and the experiments. Kinetic afterburning offers a means of extending the operating Mach number range of a fixed geometry scramjet.
Resumo:
In 1969, Denniston gave a construction of maximal arcs of degree n in Desarguesian projective planes of even order q, for all n dividing q. Recently, Mathon gave a construction method that generalized that of Denniston. In this paper we use that method to give maximal arcs that are not of Dermiston type for all n dividing q, 4 < n < q/2, q even. It is then shown that there are a large number of isomorphism classes of such maximal arcs when n is approximately rootq. (C) 2003 Elsevier Ltd. All rights reserved.