174 resultados para Geometry, Non-Euclidean.
em University of Queensland eSpace - Australia
Resumo:
We derive analytical solutions for the three-dimensional time-dependent buckling of a non-Newtonian viscous plate in a less viscous medium. For the plate we assume a power-law rheology. The principal, axes of the stretching D-ij in the homogeneously deformed ground state are parallel and orthogonal to the bounding surfaces of the plate in the flat state. In the model formulation the action of the less viscous medium is replaced by equivalent reaction forces. The reaction forces are assumed to be parallel to the normal vector of the deformed plate surfaces. As a consequence, the buckling process is driven by the differences between the in-plane stresses and out of plane stress, and not by the in-plane stresses alone as assumed in previous models. The governing differential equation is essentially an orthotropic plate equation for rate dependent material, under biaxial pre-stress, supported by a viscous medium. The differential problem is solved by means of Fourier transformation and largest growth coefficients and corresponding wavenumbers are evaluated. We discuss in detail fold evolutions for isotropic in-plane stretching (D-11 = D-22), uniaxial plane straining (D-22 = 0) and in-plane flattening (D-11 = -2D(22)). Three-dimensional plots illustrate the stages of fold evolution for random initial perturbations or initial embryonic folds with axes non-parallel to the maximum compression axis. For all situations, one dominant set of folds develops normal to D-11, although the dominant wavelength differs from the Biot dominant wavelength except when the plate has a purely Newtonian viscosity. However, in the direction parallel to D-22, there exist infinitely many modes in the vicinity of the dominant wavelength which grow only marginally slower than the one corresponding to the dominant wavelength. This means that, except for very special initial conditions, the appearance of a three-dimensional fold will always be governed by at least two wavelengths. The wavelength in the direction parallel to D-11 is the dominant wavelength, and the wavelength(s) in the direction parallel to D-22 is determined essentially by the statistics of the initial state. A comparable sensitivity to the initial geometry does not exist in the classic two-dimensional folding models. In conformity with tradition we have applied Kirchhoff's hypothesis to constrain the cross-sectional rotations of the plate. We investigate the validity of this hypothesis within the framework of Reissner's plate theory. We also include a discussion of the effects of adding elasticity into the constitutive relations and show that there exist critical ratios of the relaxation times of the plate and the embedding medium for which two dominant wavelengths develop, one at ca. 2.5 of the classical Biot dominant wavelength and the other at ca. 0.45 of this wavelength. We propose that herein lies the origin of parasitic folds well known in natural examples.
Resumo:
Two aspects of hydrogen-air non-equilibrium chemistry related to scramjets are nozzle freezing and a process called 'kinetic afterburning' which involves continuation of combustion after expansion in the nozzle. These effects were investigated numerically and experimentally with a model scramjet combustion chamber and thrust nozzle combination. The overall model length was 0.5m, while precombustion Mach numbers of 3.1 +/- 0.3 and precombustion temperatures ranging from 740K to 1,400K were involved. Nozzle freezing was investigated at precombustion pressures of 190kPa and higher, and it was found that the nozzle thrusts were within 6% of values obtained from finite rate numerical calculations, which were within 7% of equilibrium calculations. When precombustion pressures of 70kPa or less were used, kinetic afterburning was found to be partly responsible for thrust production, in both the numerical calculations and the experiments. Kinetic afterburning offers a means of extending the operating Mach number range of a fixed geometry scramjet.
Resumo:
In 1969, Denniston gave a construction of maximal arcs of degree n in Desarguesian projective planes of even order q, for all n dividing q. Recently, Mathon gave a construction method that generalized that of Denniston. In this paper we use that method to give maximal arcs that are not of Dermiston type for all n dividing q, 4 < n < q/2, q even. It is then shown that there are a large number of isomorphism classes of such maximal arcs when n is approximately rootq. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The Equilibrium Flux Method [1] is a kinetic theory based finite volume method for calculating the flow of a compressible ideal gas. It is shown here that, in effect, the method solves the Euler equations with added pseudo-dissipative terms and that it is a natural upwinding scheme. The method can be easily modified so that the flow of a chemically reacting gas mixture can be calculated. Results from the method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a conventional continuum solution. Results are also presented for the calculation of a plane two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt-nosed body.
Resumo:
A piecewise uniform fitted mesh method turns out to be sufficient for the solution of a surprisingly wide variety of singularly perturbed problems involving steep gradients. The technique is applied to a model of adsorption in bidisperse solids for which two fitted mesh techniques, a fitted-mesh finite difference method (FMFDM) and fitted mesh collocation method (FMCM) are presented. A combination (FMCMD) of FMCM and the DASSL integration package is found to be most effective in solving the problems. Numerical solutions (FMFDM and FMCMD) were found to match the analytical solution when the adsorption isotherm is linear, even under conditions involving steep gradients for which global collocation fails. In particular, FMCMD is highly efficient for macropore diffusion control or micropore diffusion control. These techniques are simple and there is no limit on the range of the parameters. The techniques can be applied to a variety of adsorption and desorption problems in bidisperse solids with non-linear isotherm and for arbitrary particle geometry.
Resumo:
The purpose of this study was to determine the attentional demands of natural and imposed gait, as well as the attentional costs of transitions between the walking and running co-ordination patterns. Seven healthy young men and four healthy young women undertook an auditory probe reaction time task concurrently with self-selected gait (Experiment 1) and imposed walking and running (Experiment 2) at different speeds on a motor-driven treadmill. In Experiment 1, where participants were free to choose their own movement pattern to match the speed of travel of the treadmill, normal gait control was shown to have a significant attentional cost, and hence not be automatic in the classical sense. However, this attentional cost did not differ between the two gait modes or at the transition point. In Experiment 2, where participants were required to maintain specific gait modes regardless of the treadmill speed, the maintenance of walking at speeds normally associated with running was found to have an attentional cost whereas this was not the case for running at normal walking speeds. Collectively the findings support a model of gait control in which the normal switching between gait modes is determined with minimal attention demand and in which it is possible to sustain non-preferred gait modes although, in the case of walking, only at a significant attentional/cognitive cost. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We conducted a study to assess the association between the acute respiratory health of children and the levels of particulates in communities near and away from active opencast coal mines. The study enrolled children aged 1–11 years from the general population of five socioeconomically matched pairs of nonurban communities in northern England. Diaries of respiratory events were collected for 1405 children, and information was collected on the consultations of 2442 children with family/general practitioners over the 6-week study periods during 1996–1997, with concurrent monitoring of particulate levels. The associations found between daily PM10 levels and respiratory symptoms were frequently small and positive and sometimes varied between communities. The magnitude of these associations were in line with those from previous studies, even though daily particulate levels were low, and the children were drawn from the general population, rather than from the population with respiratory problems. The associations among asthma reliever use, consultations with general practitioners, and daily particulate levels were of a similar strength but estimated less precisely. The strength of association between all respiratory health measures and particulate levels was similar in communities near and away from opencast coal mining sites.
Resumo:
The A(n-1)((1)) trigonometric vertex model with generic non-diagonal boundaries is studied. The double-row transfer matrix of the model is diagonalized by algebraic Bethe ansatz method in terms of the intertwiner and the corresponding face-vertex relation. The eigenvalues and the corresponding Bethe ansatz equations are obtained.
Resumo:
The Direct Simulation Monte Carlo (DSMC) method is used to simulate the flow of rarefied gases. In the Macroscopic Chemistry Method (MCM) for DSMC, chemical reaction rates calculated from local macroscopic flow properties are enforced in each cell. Unlike the standard total collision energy (TCE) chemistry model for DSMC, the new method is not restricted to an Arrhenius form of the reaction rate coefficient, nor is it restricted to a collision cross-section which yields a simple power-law viscosity. For reaction rates of interest in aerospace applications, chemically reacting collisions are generally infrequent events and, as such, local equilibrium conditions are established before a significant number of chemical reactions occur. Hence, the reaction rates which have been used in MCM have been calculated from the reaction rate data which are expected to be correct only for conditions of thermal equilibrium. Here we consider artificially high reaction rates so that the fraction of reacting collisions is not small and propose a simple method of estimating the rates of chemical reactions which can be used in the Macroscopic Chemistry Method in both equilibrium and non-equilibrium conditions. Two tests are presented: (1) The dissociation rates under conditions of thermal non-equilibrium are determined from a zero-dimensional Monte-Carlo sampling procedure which simulates ‘intra-modal’ non-equilibrium; that is, equilibrium distributions in each of the translational, rotational and vibrational modes but with different temperatures for each mode; (2) The 2-D hypersonic flow of molecular oxygen over a vertical plate at Mach 30 is calculated. In both cases the new method produces results in close agreement with those given by the standard TCE model in the same highly nonequilibrium conditions. We conclude that the general method of estimating the non-equilibrium reaction rate is a simple means by which information contained within non-equilibrium distribution functions predicted by the DSMC method can be included in the Macroscopic Chemistry Method.
Resumo:
In this paper, a progressive asymptotic approach procedure is presented for solving the steady-state Horton-Rogers-Lapwood problem in a fluid-saturated porous medium. The Horton-Rogers-Lapwood problem possesses a bifurcation and, therefore, makes the direct use of conventional finite element methods difficult. Even if the Rayleigh number is high enough to drive the occurrence of natural convection in a fluid-saturated porous medium, the conventional methods will often produce a trivial non-convective solution. This difficulty can be overcome using the progressive asymptotic approach procedure associated with the finite element method. The method considers a series of modified Horton-Rogers-Lapwood problems in which gravity is assumed to tilt a small angle away from vertical. The main idea behind the progressive asymptotic approach procedure is that through solving a sequence of such modified problems with decreasing tilt, an accurate non-zero velocity solution to the Horton-Rogers-Lapwood problem can be obtained. This solution provides a very good initial prediction for the solution to the original Horton-Rogers-Lapwood problem so that the non-zero velocity solution can be successfully obtained when the tilted angle is set to zero. Comparison of numerical solutions with analytical ones to a benchmark problem of any rectangular geometry has demonstrated the usefulness of the present progressive asymptotic approach procedure. Finally, the procedure has been used to investigate the effect of basin shapes on natural convection of pore-fluid in a porous medium. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
Four adducts of triphenylphosphine oxide with aromatic carboxylic acids have been synthesized and tested for second-order non-linear optical properties. These were with N-methylpyrrole-2-carboxylic acid (I), indole-2-carboxylic acid (2), 3-dimethylaminobenzoic acid (3), and thiophen-2-carboxylic acid (4). Compound (1) produced clear, colourless crystals (space group P2(1)2(1)2(1) With a 9.892(1), b 14.033(1), c 15.305(1) Angstrom, Z 4) which allowed the structure to be determined by X-ray diffraction.
Resumo:
In most Of the practical six-actuator in-parallel manipulators, the octahedral form is either taken as it stands or is approximated. Yet considerable theoretical attention is paid in the literature to more general forms. Here we touch on the general form, and describe some aspects of its behavior that vitiate strongly against its adoption as a pattern for a realistic manipulate,: We reach the conclusion that the structure for in-parallel manipulators must be triangulated as fully as possible, so leading to the octahedral form. In describing some of the geometrical properties of the general octahedron, we show how they apply to manipulators. We examine in detail the special configurations at which the 6 x 6 matrix of leg lines is singular presenting results from the point of view of geometry in preference to analysis. In extending and enlarging on some known properties, a few behavioral surprises materialize. In studying special configurations, we start with the most general situation, and every other case derives from this. Our coverage is more comprehensive than any that we have found. We bring to light material that is, we think, of significant use to a designer.
Resumo:
Using survey data for Tongan and Samoan migrants in Sydney the effects of visa restrictions on labor market performance of migrants are assessed. Univariate analysis suggests a positive association between unemployment and the unrestricted entry of Samoan step-migrants from New Zealand. A probit model of the determinants of unemployment is estimated with controls for human capital and demographic variables. While human capital endowments are important, visa restrictions do not have a significant effect on either group's employability. Implications for policy are discussed highlighting the complementarities between host country immigration policies and foreign aid programs.
Resumo:
A generalization of the classical problem of optimal lattice covering of R-n is considered. Solutions to this generalized problem are found in two specific classes of lattices. The global optimal solution of the generalization is found for R-2. (C) 1998 Elsevier Science Inc. All rights reserved.