182 resultados para Geometric Semantic Genetic Programming

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a genetic programming (GP) approach for evolving genetic networks that demonstrate desired dynamics when simulated as a discrete stochastic process. Our representation of genetic networks is based on a biochemical reaction model including key elements such as transcription, translation and post-translational modifications. The stochastic, reaction-based GP system is similar but not identical with algorithmic chemistries. We evolved genetic networks with noisy oscillatory dynamics. The results show the practicality of evolving particular dynamics in gene regulatory networks when modelled with intrinsic noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eukaryotic phenotypic diversity arises from multitasking of a core proteome of limited size. Multitasking is routine in computers, as well as in other sophisticated information systems, and requires multiple inputs and outputs to control and integrate network activity. Higher eukaryotes have a mosaic gene structure with a dual output, mRNA (protein-coding) sequences and introns, which are released from the pre-mRNA by posttranscriptional processing. Introns have been enormously successful as a class of sequences and comprise up to 95% of the primary transcripts of protein-coding genes in mammals. In addition, many other transcripts (perhaps more than half) do not encode proteins at all, but appear both to be developmentally regulated and to have genetic function. We suggest that these RNAs (eRNAs) have evolved to function as endogenous network control molecules which enable direct gene-gene communication and multitasking of eukaryotic genomes. Analysis of a range of complex genetic phenomena in which RNA is involved or implicated, including co-suppression, transgene silencing, RNA interference, imprinting, methylation, and transvection, suggests that a higher-order regulatory system based on RNA signals operates in the higher eukaryotes and involves chromatin remodeling as well as other RNA-DNA, RNA-RNA, and RNA-protein interactions. The evolution of densely connected gene networks would be expected to result in a relatively stable core proteome due to the multiple reuse of components, implying,that cellular differentiation and phenotypic variation in the higher eukaryotes results primarily from variation in the control architecture. Thus, network integration and multitasking using trans-acting RNA molecules produced in parallel with protein-coding sequences may underpin both the evolution of developmentally sophisticated multicellular organisms and the rapid expansion of phenotypic complexity into uncontested environments such as those initiated in the Cambrian radiation and those seen after major extinction events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The identification and characterization of genes that influence the risk of common, complex multifactorial disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. We have previously introduced a genetic programming optimized neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of gene combinations associated with disease risk. The goal of this study was to evaluate the power of GPNN for identifying high-order gene-gene interactions. We were also interested in applying GPNN to a real data analysis in Parkinson's disease. Results We show that GPNN has high power to detect even relatively small genetic effects (2–3% heritability) in simulated data models involving two and three locus interactions. The limits of detection were reached under conditions with very small heritability (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The identification and characterization of genes that influence the risk of common, complex multifactorial disease primarily through interactions with other genes and environmental factors remains a statistical and computational challenge in genetic epidemiology. We have previously introduced a genetic programming optimized neural network (GPNN) as a method for optimizing the architecture of a neural network to improve the identification of gene combinations associated with disease risk. The goal of this study was to evaluate the power of GPNN for identifying high-order gene-gene interactions. We were also interested in applying GPNN to a real data analysis in Parkinson's disease. Results: We show that GPNN has high power to detect even relatively small genetic effects (2-3% heritability) in simulated data models involving two and three locus interactions. The limits of detection were reached under conditions with very small heritability (

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determining the dimensionality of G provides an important perspective on the genetic basis of a multivariate suite of traits. Since the introduction of Fisher's geometric model, the number of genetically independent traits underlying a set of functionally related phenotypic traits has been recognized as an important factor influencing the response to selection. Here, we show how the effective dimensionality of G can be established, using a method for the determination of the dimensionality of the effect space from a multivariate general linear model introduced by AMEMIYA (1985). We compare this approach with two other available methods, factor-analytic modeling and bootstrapping, using a half-sib experiment that estimated G for eight cuticular hydrocarbons of Drosophila serrata. In our example, eight pheromone traits were shown to be adequately represented by only two underlying genetic dimensions by Amemiya's approach and factor-analytic modeling of the covariance structure at the sire level. In, contrast, bootstrapping identified four dimensions with significant genetic variance. A simulation study indicated that while the performance of Amemiya's method was more sensitive to power constraints, it performed as well or better than factor-analytic modeling in correctly identifying the original genetic dimensions at moderate to high levels of heritability. The bootstrap approach consistently overestimated the number of dimensions in all cases and performed less well than Amemiya's method at subspace recovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a deregulated electricity market, optimizing dispatch capacity and transmission capacity are among the core concerns of market operators. Many market operators have capitalized on linear programming (LP) based methods to perform market dispatch operation in order to explore the computational efficiency of LP. In this paper, the search capability of genetic algorithms (GAs) is utilized to solve the market dispatch problem. The GA model is able to solve pool based capacity dispatch, while optimizing the interconnector transmission capacity. Case studies and corresponding analyses are performed to demonstrate the efficiency of the GA model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

μ-Charts are a Statechart-like language which is designed for specifying reactive systems. This paper extends the language of μ-charts with a new parallel operator; it defines a formal semantics for the language, and then it explores the semantic properties of the extended language. The paper concludes with a simple case study to illustrate how the language may be used to specify and reason about reactive systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inosine triphosphate pyrophosphohydrolase (ITPase) deficiency is a common inherited condition characterized by the abnormal accumulation of inosine triphosphate (ITP) in erythrocytes. The genetic basis and pathological consequences of ITPase deficiency are unknown. We have characterized the genomic structure of the ITPA gene, showing that it has eight exons. Five single nucleotide polymorphisms were identified, three silent (138GMA, 561GMA, 708GMA) and two associated with ITPase deficiency (94CMA, IVS2+21AMC). Homozygotes for the 94CMA missense mutation (Pro32 to Thr) had zero erythrocyte ITPase activity, whereas 94CMA heterozygotes averaged 22.5% of the control mean, a level of activity consistent with impaired subunit association of a dimeric enzyme. ITPase activity of IVS2+21AMC homozygotes averaged 60% of the control mean. In order to explore further the relationship between mutations and enzyme activity, we examined the association between genotype and ITPase activity in 100 healthy controls. Ten subjects were heterozygous for 94CMA (allele frequency: 0.06), 24 were heterozygotes for IVS2+21AMC (allele frequency: 0.13) and two were compound heterozygous for these mutations. The activities of IVS2+21AMC heterozygotes and 94CMA/IVS2+21AMC compound heterozygotes were 60% and 10%, respectively, of the normal control mean, suggesting that the intron mutation affects enzyme activity. In all cases when ITPase activity was below the normal range, one or both mutations were found. The ITPA genotype did not correspond to any identifiable red cell phenotype. A possible relationship between ITPase deficiency and increased drug toxicity of purine analogue drugs is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current genetic methods enable highly specific identification of DNA from modern fish bone. The applicability of these methods to the identification of archaeological fish bone was investigated through a study of a sample from late Holocene southeast Queensland sites. The resultant overall success rate of 2% indicates that DNA analysis is, as yet, not feasible for identifying fish bone from any given site. Taphonomic issues influencing the potential of genetic identification methods are raised and discussed in light of this result.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explains and explores the concept of "semantic molecules" in the NSM methodology of semantic analysis. A semantic molecule is a complex lexical meaning which functions as an intermediate unit in the structure of other, more complex concepts. The paper undertakes an overview of different kinds of semantic molecule, showing how they enter into more complex meanings and how they themselves can be explicated. It shows that four levels of "nesting" of molecules within molecules are attested, and it argues that while some molecules such as 'hands' and 'make', may well be language-universal, many others are language-specific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

These notes follow on from the material that you studied in CSSE1000 Introduction to Computer Systems. There you studied details of logic gates, binary numbers and instruction set architectures using the Atmel AVR microcontroller family as an example. In your present course (METR2800 Team Project I), you need to get on to designing and building an application which will include such a microcontroller. These notes focus on programming an AVR microcontroller in C and provide a number of example programs to illustrate the use of some of the AVR peripheral devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the construction of a physical and genetic map of the virulent Wolbachia strain, wMelPop. This map was determined by ordering 28 chromosome fragments that resulted from digestion with the restriction endonucleases FseI, ApaI, SmaI, and AscI and were resolved by pulsed-field gel electrophoresis. Southern hybridization was done with 53 Wolbachia-specific genes as probes in order to determine the relative positions of these restriction fragments and use them to serve as markers. Comparison of the resulting map with the whole genome sequence of the closely related benign Wolbachia strain, wMel, shows that the two genomes are largely conserved in gene organization with the exception of a single inversion in the chromosome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possibility of controlling vector-borne disease through the development and release of transgenic insect vectors has recently gained popular support and is being actively pursued by a number of research laboratories around the world. Several technical problems must be solved before such a strategy could be implemented: genes encoding refractory traits (traits that render the insect unable to transmit the pathogen) must be identified, a transformation system for important vector species has to be developed, and a strategy to spread the refractory trait into natural vector populations must be designed. Recent advances in this field of research make it seem likely that this technology will be available in the near future. In this paper we review recent progress in this area as well as argue that care should be taken in selecting the most appropriate disease system with which to first attempt this form of intervention. Much attention is currently being given to the application of this technology to the control of malaria, transmitted by Anopheles gambiae in Africa. While malaria is undoubtedly the most important vector-borne disease in the world and its control should remain an important goal, we maintain that the complex epidemiology of malaria together with the intense transmission rates in Africa may make it unsuitable for the first application of this technology. Diseases such as African trypanosomiasis, transmitted by the tsetse fly, or unstable malaria in India may provide more appropriate initial targets to evaluate the potential of this form of intervention.